Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes: A next-generation therapy soon available?

17.10.2019

By identifying a protein that helps regulate blood glucose and lipids, researchers at UNIGE hope for the rapid development of treatments more effective than current insulin therapy

Insulin, a hormone essential for regulating blood sugar and lipids, is normally produced by pancreatic β cells. In many people with diabetes, however, pancreatic cells are not (or no longer) functional, causing a chronic and potentially fatal insulin deficiency that can only be controlled through daily insulin injections.


On the left, a pancreatic islet of a healthy mouse (in red, cells producing insulin). On the right, a pancreatic islet of an insulin deficient mouse (cells producing insulin are virtually absent).

Credit: © UNIGE

However, this approach has serious adverse effects, including an increased risk of life-threatening hypoglycaemia, and it does not restore metabolic balance. In order to improve therapy, researchers at the University of Geneva (UNIGE), Switzerland, have identified a protein called S100A9 which, under certain conditions, seems to act as a blood sugar and lipid regulator while avoiding the most harmful side effects of insulin.

This discovery, that can be read in Nature Communications, paves the way for better treatment of diabetes and could significantly improve the quality of life for tens of millions of people affected by insulin deficiency.

Today, insulin injections are essential for the survival of patients with type 1 diabetes or a severe form of type 2 diabetes. However, this treatment is not without risk: overdose can trigger hypoglycaemia, i.e. a drop in blood glucose levels that can lead to coma or even death. But underdosed, it can lead to equally dangerous hyperglycaemia.

In addition, insulin is involved in the control of ketones, elements that are produced when the liver breaks down lipids in the absence of sufficient glucose reserves, which become toxic in too large quantities. In addition, long-term insulin treatments cause excess fat and cholesterol in the blood and therefore increases the risk of cardiovascular disease.

As early as 2010, Roberto Coppari's team, a professor at the Diabetes Centre of the UNIGE Faculty of Medicine, highlighted the gluco- and lipid-regulatory properties of leptin, a hormone involved in hunger control. "However, leptin has proved difficult to use pharmacologically in human beings due to the development of leptin resistance", says Roberto Coppari. "In order to overcome this problem, we shifted our focus on the metabolic mechanisms triggered by leptin rather than on the hormone itself."

An effective protein despite its bad reputation

The scientists observed changes in the blood of insulin-deficient mice to whom they administered leptin and noted the abundant presence of the S100A9 protein. "This protein has a bad reputation because, when it binds to its sister protein S100A8, it creates a complex called calprotectin that causes the symptoms of many inflammatory or autoimmune diseases," says Giorgio Ramadori, a researcher at the Diabetes Centre of the UNIGE Faculty of Medicine and the first author of this work. "However, by over-expressing S100A9, we can, paradoxically, reduce its harmful combination with S100A8, hence dampening calprotectin levels."

The researchers then administered high doses of S100A9 to their insulin-deficient diabetic mice and found improved glucose management and better control of ketones and of lipids, two metabolic abnormalities that are common in people with insulin deficiency.

In order to better understand how this mechanism translates to human beings, Professor Coppari's team is currently conducting a clinical observation study, in collaboration with the Geneva University Hospitals, in patients with type 1 and type 2 diabetes presenting very high glucose and ketones levels. They want to identify the correlations between the level of S100A9 in the blood and the severity of symptoms. "In human beings, previous studies already indicated that increased S100A9 levels correlate with reduced diabetes risks; hence, these results further bolster the clinical relevance of our data. As such, we are currently working to progress to phase I human clinical trials to directly test the safety and efficacy of S100A9 in insulin deficiency", says Roberto Coppari.

Towards combined treatments

The team then made a second discovery: S100A9 protein only appears to work in the presence of TLR4, a receptor located on the membrane of certain cells, including adipocytes or immune system cells. "Why? For the moment, it remains mysterious", says Roberto Coppari. The researchers are currently working on a treatment that would combine low doses of insulin and S100A9 to better control glucose and ketones and limit high-dose insulin side effects. "We also want to decipher the exact role of TLR4 in order to offer a therapeutic strategy that achieves the delicate balance of optimal blood glucose, ketone and lipid control."

The stakes are high: tens of millions of people take insulin every day throughout their lives, a treatment that is often difficult to balance for both patients and caregivers. The new therapeutic strategy proposed by Roberto Coppari and his team could greatly improve their quality of life.

###

This work was supported by European Commission, the Swiss National Science Foundation, the Swiss Cancer League, the Louis-Jeantet Foundation, the Fondation Pour Recherches Medicales of the University of Geneva, the Bo and Kerstin Hjelt Foundation for Diabetes Research and the Gertrude Von Meissner Foundation.

Media Contact

Roberto Coppari
Roberto.Coppari@unige.ch
41-223-795-539

 @UNIGEnews

http://www.unige.ch 

Roberto Coppari | EurekAlert!
Further information:
http://dx.doi.org/10.1038/s41467-019-11498-x

More articles from Health and Medicine:

nachricht A new link between migraines, opioid overuse may be key to treating pain
20.11.2019 | University of Illinois at Chicago

nachricht Walking Changes Vision
20.11.2019 | Julius-Maximilians-Universität Würzburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>