Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Deranged Calcium Signaling’ Contributes to Neurological Disorder

27.11.2008
Defective calcium metabolism in nerve cells may play a major role in a fatal genetic neurological disorder that resembles Huntington’s disease, researchers at UT Southwestern Medical Center have found in a mouse study.

The disease, called spinocerebellar ataxia 3 – also known as SCA3, or Machado-Joseph disease – is a genetic disorder that, like Huntington’s, impairs coordination, speech, and vision and causes brain atrophy. Although rare, the condition is one of the most common inherited forms of ataxia and most frequently affects people of Portuguese descent.

The UT Southwestern researchers previously had found that calcium flow within nerve cells is disrupted in Huntington’s disease. The latest findings, appearing in the Nov. 26 issue of the Journal of Neuroscience, suggest that SCA3, which is caused by a genetic defect similar to the one found in Huntington’s, involves the same “deranged calcium signaling,” researchers said.

Both SCA3 and Huntington’s are caused by repeating segments of DNA, although the repeats associated with each disease appear in different genes that code for different proteins. The genetic mutations cause repeated units of the amino acid glutamine to appear in the respective proteins. The more repeats there are, the earlier the onset of the disease.

In Huntington’s disease the mutated protein is Huntingtin; in SCA3 it is ataxin-3.

The researchers determined that the mutant human ataxin-3 activates a molecule that acts as a channel in the membrane of a sequestered chamber inside cells called the endoplasmic reticulum, or ER. The channel then releases calcium into the cell as a whole. Normal ataxin-3 did not activate the channel or cause calcium release.

The researchers also found that cells from a person with SCA3 showed abnormally high levels of calcium release when treated with bradykinin, a substance that also activates the calcium channel.

Such abnormal calcium release is toxic to cells and results in impaired motor function, said Dr. Ilya Bezprozvanny, professor of physiology at UT Southwestern and senior author of the study. “We’re generalizing the idea of calcium toxicity for this group of diseases, which are called polyglutamine expansion disorders,” he said.

The researchers also studied mice that had been genetically engineered to overexpress the human ataxin-3 protein containing excessive glutamine repeats. The mutant mice performed poorly on tests of motor coordination compared with normal mice and displayed age-dependent neuronal loss in the same brain regions that are affected in SCA3 patients.

To test whether blocking calcium release would alleviate symptoms in the mice, the researchers treated them for a year with dantrolene, a drug that blocks excessive calcium release from the ER in skeletal muscle cells. Dantrolene is approved for use in humans as a one-time emergency treatment for a reaction to anesthesia.

Treatment with dantrolene improved the coordination of the mutant mice and slowed brain atrophy.

Dantrolene is not suitable for long-term use in humans, however, because of side effects that can potentially harm the liver and the heart and cause neurological problems, said Dr. Bezprozvanny.

“The take-home message is not so much that dantrolene is the solution for treating SCA3, but that this shows a direction for research into a better drug to block similar targets with fewer side effects,” Dr. Bezprozvanny said.

The researchers now are studying whether blocking calcium release from the endoplasmic reticulum also can improve function in mouse models of Huntington’s and other neurodegenerative diseases such as spinocerebellar ataxia type 2 and Alzheimer’s disease.

Other UT Southwestern researchers involved in the study were Dr. Xi Chen, postdoctoral researcher in physiology; Dr. Tie-Shan Tang, instructor of physiology; Dr. Huiping Tu, former instructor of physiology; graduate student Omar Nelson; and Dr. Robert Hammer, professor of biochemistry. Researchers from Brunel University in London and RIKEN Brain Science Institute in Japan also participated.

The study was funded by the National Institutes of Health, the Robert A. Welch Foundation, the McKnight Endowment Fund for Neuroscience, the National Ataxia Foundation, Ataxia UK, Ataxia MJD Research Project Inc. and MEXT of Japan.

Dr. Ilya Bezprozvanny -- http://www.utsouthwestern.edu/findfac/professional/0,2356,20034,00.html

Aline McKenzie | Newswise Science News
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/findfac/professional/0,2356,20034,00.html

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>