Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Derailing inner ear development

25.01.2010
A molecule that regulates expression of two growth factors is critical for inner ear development

During mammalian neural development, cells extend projections to target tissues from which they derive growth factors needed for survival. Initially, neurons of the inner ear require brain-derived neurotrophic factor (Bdnf) and neurotrophin 3 (Ntf3) from the otic placode, the sensory epithelium from which the cells are derived. Later, the cells express these growth factors themselves, which support the neurons that project to them.

Although this process is well known, the underlying molecular mechanisms have been unclear. Slitrk6, a transmembrane protein with structural similarities to the Slit family of axon guidance molecules and to the Ntrk neurotrophic factor receptors, is known to be expressed in the otic placode, and is therefore likely to play a role in inner ear development.

To investigate this, Kei-ichi Katayama of the RIKEN Brain Science Institute and his colleagues generated mice lacking the Slitrk6 gene. They found that the gross structure of the inner appeared normal1. However, they observed a significant reduction in the number of nerve fiber bundles projecting to the cochlea (Fig. 1). These defects were evident during late embryonic stages, and persisted throughout postnatal development. In the vestibular region, the defects were more severe, with nerve fibers bundles completely absent in this region in most mutant animals. In others, they were significantly reduced or had abnormal trajectories.

Next the researchers examined the spiral and vestibular ganglia, which contain neurons that project to the cochlea and vestibular region, respectively. Cell death was significantly higher in the mutants than in wild-type animals, so that the structures were up to 75% smaller than normal by the time of birth.

They also found that cultured sensory neurons from the spiral ganglion of mutant mice could grow projections towards sensory epithelial tissue from normal, but not mutant, mice. Further experiments revealed a mild but significant reduction in levels of Bdnf and Ntf-3 in the developing inner ear of the mutants. The phenotype of the mutant mice is therefore not due to axon guidance defects. Instead, these results suggest that Slitrk6 is part of a signaling pathway that increases expression of Bdnf and Ntf3 in the sensory epithelia.

“Behavioral tests show that the Slitrk6 knockout mice exhibit hearing loss,” says senior author Jun Aruga, “and we are now investigating whether they also have balance deficits. We believe our mutant mice are a good animal model of sensorineural deafness, which occurs because of improper cochlear development, following over-exposure to loud noises, and as a result of aging.”

The corresponding author for this highlight is based at the Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6158
http://www.researchsea.com

Further reports about: Brain Derailing Ntf3 RIKEN inner ear molecular mechanism mutant mice nerve fiber

More articles from Health and Medicine:

nachricht New combination therapy established as safe and effective for prostate cancer
26.06.2019 | Society of Nuclear Medicine and Molecular Imaging

nachricht Novel model for studying intestinal parasite could advance vaccine development
26.06.2019 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Shell increases versatility of nanowires

26.06.2019 | Materials Sciences

Hubble finds tiny 'electric soccer balls' in space, helps solve interstellar mystery

26.06.2019 | Physics and Astronomy

New combination therapy established as safe and effective for prostate cancer

26.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>