Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control of blood vessels a possible weapon against obesity

07.01.2009
Mice exposed to low temperatures develop more blood vessels in their adipose tissue and metabolise body fat more quickly, according to a new study from Karolinska Institutet. Scientists now hope to learn how to control blood vessel development in humans in order to combat obesity and diabetes.

The growth of fat cells and their metabolism depend on oxygen and blood-borne nutrients. A possible way to regulate the amount of body fat – in order, for instance, to combat obesity – can therefore be to affect the development of blood vessels in the adipose tissue.

A team of researchers at Karolinska Institutet have now demonstrated the rapid development of blood vessels in the adipose tissue of mice exposed to low temperatures. This is followed in its turn by a transformation of the adipose tissue from ‘white’ fat to ‘brown’ fat, which has higher metabolic activity and which breaks down more quickly.

“This is the first time it’s been shown that blood vessel growth affects the metabolic activity of adipose tissue rather than vice versa,” says Professor Yihai Cao, who led the study. “If we can learn how to regulate the development of blood vessels in humans, we’d open up new therapeutic avenues for obesity and metabolic diseases like diabetes.”

Brown fat releases heat when it breaks down, and is mainly found in hibernating animals. In humans, it is found in newborn babies, but scientists believe by controlling blood vessel development that it might be possible to transform white fat to brown fat in adults as well.

Publication: “Cold triggers VEGF-dependent but hypoxia-independent angiogenesis in adipose tissues and anti-VEGF agents modulate adipose tissue metabolism”,

Yuan Xue, Natasa Petrovic, Renhai Cao, Ola Larsson, Sharon Lim, Shaohua Chen, Helena M Feldmann, Zicai Liang, Zhengping Zhu, Jan Nedergaard, Barbara Cannon, Yihai Cao, Cell Metabolism, 6 January 2009.

Katarina Sternudd | alfa
Further information:
http://ki.se

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>