Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Compound Prevents First Steps of Fungal Infection

14.08.2013
Discovery by WPI and UMass Medical School team reported in Proceedings of National Academy of Sciences

Targeting serious and sometimes deadly fungal infections, a team of researchers at Worcester Polytechnic Institute (WPI) and the University of Massachusetts Medical School (UMMS) has discovered a chemical compound that prevents fungal cells from adhering to surfaces, which, typically, is the first step of the infection process used by the human pathogen Candida albicans (C. albicans).


Right, C. albicans in its ovoid, harmless state; left, the infectious, filamented state.

After screening 30,000 chemical compounds in a series of tests with live C. albicans, the team found one molecule that prevented the yeast from adhering to human cells or to polystyrene, a common plastic used in many medical devices. Named "filastatin" by the researchers, this molecule now emerges as a candidate for new anti-fungal drug development and as a potential protective material to embed on the surfaces of medical devices to prevent fungal infections.

The team, led by co-principal investigators Paul Kaufman, PhD, professor of molecular medicine at UMMS, and Reeta Rao, PhD, associate professor of biology and biotechnology at WPI, reports its findings in the paper "Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis," published online in advance of print by the journal Proceedings of the National Academy of Sciences (PNAS).

"In humans, the most widespread fungal pathogen is Candida albicans, which is also one of the most frequent causes of hospital-acquired infections," the authors write. "We conclude that filastatin is not toxic to the human cell line under our assay conditions, but is unique in that it can impair fungal adhesion both to inert surfaces and to cultured human epithelial cells."

Infection by C. albicans causes common chronic illnesses like thrush and vaginitis, which affect millions of people globally each year and are not easily cleared by the handful of anti-fungal drugs now available. While most fungal infections do not cause serious harm, if one spreads to the bloodstream it can be deadly.

Hospitalized patients with catheters or central intravenous lines are at risk as the fungi can grow on those devices and enter the body. Similarly, patients with implanted medical devices like pacemakers or prosthetic hips or knees are also at risk if the implant carries a fungus into the body. Also, people with compromised immune systems are at greater risk for serious fungal infections. Because of the lack of effective drugs against C. albicans and other pathogenic fungi, the mortality rate for systemic fungal infections is between 30 and 50 percent.

Typically, a blood stream infection of C. albicans or a similar pathogen begins with fungal cells attaching to a surface—a catheter, for example, or epithelial cells lining the mouth—to form what is known as a biofilm. Next, the ovoid shaped yeast cells morph into an invasive filamentous form, extending pointed filaments that penetrate and damage surrounding tissues. In the current study, the team found that filastatin curtailed both steps: it largely prevented C. albicans from adhering to various surfaces, and it significantly reduced filamentation (inspiring the name filastatin).

As a next step, the team tested filastatin's impact on C. albicans cells that had grown unfettered in test wells and had already adhered to the polystyrene walls. When the compound was added to the culture mix, it knocked off many of the fungal cells already stuck to the polystyrene. The inhibitory effects of filastatin were further tested on human lung cells, mouse vaginal cells, and live worms (C. elgans) exposed to the fungus to see if it would reduce adhesion and infection. In all cases, the novel small molecule had significant protective effects without showing toxicity to the host tissues.

Research is now focused on teasing out the precise molecular mechanisms filastatin uses to prevent adhesion and filamentation. "We need to find the target of this molecule," Rao said. "We have some good leads, and the fact that we aren’t seeing toxicity with host cells is very encouraging, but there is more work to be done."

Additional studies on filastatin are underway at both WPI and UMMS. "The molecule affects multiple clinically relevant species, so we're pursuing the idea that it provides a powerful probe into what makes these organisms efficient pathogens," Dr. Kaufman said. "In this era of budget gridlock in Washington, our ability to get funding from the Center for Clinical and Translational Research at UMMS to support this work was essential for allowing us to pursue our ideas for novel ways to approach this important class of hospital-acquired infections."

The project was also funded by a grant from a WPI/UMMS pilot program established to promote collaborations between researchers at the universities to advance early stage translational research. "Joint research programs, such as the pilot program between our institutions, are central to WPI's work in the life sciences," said Michael Manning, PhD, associate provost for research ad interim, at WPI. "As this collaboration between Professors Rao and Kaufman demonstrates so well, both institutions can leverage their complementary expertise for the ultimate advancement of scientific discovery and public health."

Terence R. Flotte, MD, UMMS executive deputy chancellor, provost, and dean of the School of Medicine, agreed. "The faculty of UMass Medical School and WPI possess scientific knowledge and expertise in disciplines that complement each other," he said. "The creation of this type of multidisciplinary team collaboration between the two universities allows us to work synergistically to solve problems important for improving human health."

Eileen Mell | EurekAlert!
Further information:
http://www.wpi.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>