Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New compound discovered that rapidly kills liver cancer

14.03.2012
Scientists have identified a new compound that rapidly kills hepatocellular carcinoma (HCC) cells, the most common form of liver cancer and fifth most common cancer worldwide, while sparing healthy tissue.

The compound, Factor Qunolinone Inhibitor 1 (FQI1), works by inhibiting an oncogene originally discovered by a team of researchers led by Devanand Sarkar, M.B.B.S., Ph.D., Harrison Scholar at Virginia Commonwealth University (VCU) Massey Cancer Center, Blick Scholar and assistant professor in the Department of Human and Molecular Genetics and member of the VCU Institute of Molecular Medicine at the VCU School of Medicine.

Recently published in the journal Proceedings of the National Academy of Sciences, the study demonstrates that HCC cells have what is known as an "oncogene addiction" to the transcription factor Late SV40 Factor (LSF). Oncogene addiction is a term used when a cancer cell is found to be dependent on a single gene to survive. Using the compound Factor Quinolinone Inhibitor 1 (FQI1), the scientists prevented LSF from binding to HCC DNA during the transcription process, which is the first step in a series of actions that lead to cell division and duplication. This action caused rapid HCC cell death in laboratory experiments and a dramatic reduction in tumor growth in mouse models with no observable toxicity to normal liver cells.

"We may be on the verge of developing a new, effective drug for liver cancer," said Sarkar. "In the last 2 to 3 years, we demonstrated the role of LSF in liver cancer and have been screening over 110,000 compounds to identify the ones that inhibit LSF function. We identified FQI1 as one of a class of effective compounds, but we never anticipated it would work this well."

Sarkar discovered LSF's role in liver cancer in 2010 when he demonstrated significantly higher LSF levels in HCC patients in comparison to healthy individuals, and showed that inhibition of LSF reduced the progression of HCC in laboratory experiments. This finding led to the collaboration between VCU and Boston University that resulted in the discovery of FQI1.

Now that FQI1 has been identified, pharmacokinetic studies are being conducted to determine how the drug behaves in the human body. Once the scientists have determined how the drug is absorbed, distributed, metabolized and eliminated from the body, they will work with clinicians to translate their findings into phase I clinical trials in patients with liver cancer.

"We have proven this compound is effective and nontoxic in living animals," said Sarkar. "While we won't know how FQI1 reacts in humans until the first clinical trial, we are very excited by our findings and hope they lead to a new drug for a disease that is currently very difficult to treat."

The lead investigators on this study were Trevor J. Grant and Joshua Bishop, Ph.D., from Boston University. In addition to Grant and Bishop, Sarkar collaborated with Ayesha Siddiq, Ph.D., Rachel Gredler and Xue-Ning Shen, M.D., from VCU School of Medicine; Jennifer Sherman and Kevin Fitzgerald, Ph.D., from Alnylam Pharmaceuticals, Inc.; Sriharsa Pradhan, Ph.D., from New England Biolabs, Inc.; Laura A. Briggs, Ph.D., and William H. Andrews, Ph.D., from Sierra Sciences, LLC; and Lisa Christadore, Girish Barot, Ph.D., Hang Gyeong Chin, Sarah Woodson, John Kavouris, Tracy Meehan, Scott E. Schaus, Ph.D., and Ulla Hansen, Ph.D., from Boston University.

The full manuscript is available online at: http://www.pnas.org/content/early/2012/03/02/1121601109.full.pdf+html

News directors: Broadcast access to VCU Massey Cancer Center experts is available through VideoLink ReadyCam. ReadyCam transmits video and audio via fiber optics through a system that is routed to your newsroom. To schedule a live or taped interview, contact John Wallace, (804) 628-1550.

About VCU Massey Cancer Center: VCU Massey Cancer Center is one of only 66 National Cancer Institute-designated institutions in the country that leads and shapes America's cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and clinical trials, and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It has one of the largest offerings of clinical trials in Virginia and serves patients in Richmond and in four satellite locations. Its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and ultimately cure cancer. Visit Massey online at www.massey.vcu.edu or call 877-4-MASSEY for more information.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 31,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

John Wallace | EurekAlert!
Further information:
http://www.vcu.edu

More articles from Health and Medicine:

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>