Compound derived from vegetables shields rodents from lethal radiation doses

Their study, published today in the Proceedings of the National Academy of Sciences (PNAS) suggests the compound, already shown to be safe for humans, may protect normal tissues during radiation therapy for cancer treatment and prevent or mitigate sickness caused by radiation exposure.

The compound, known as DIM (3,3'-diindolylmethane), previously has been found to have cancer preventive properties.

“DIM has been studied as a cancer prevention agent for years, but this is the first indication that DIM can also act as a radiation protector,” says the study's corresponding author, Eliot Rosen, MD, PhD, of Georgetown Lombardi Comprehensive Cancer Center.

For the study, the researchers irradiated rats with lethal doses of gamma ray radiation. The animals were then treated with a daily injection of DIM for two weeks, starting 10 minutes after the radiation exposure.

The result was stunning, says Rosen, a professor of oncology, biochemistry and cell & molecular biology, and radiation medicine. “All of the untreated rats died, but well over half of the DIM-treated animals remained alive 30 days after the radiation exposure.”

Rosen adds that DIM also provided protection whether the first injection was administered 24 hours before or up to 24 hours after radiation exposure.

“We also showed that DIM protects the survival of lethally irradiated mice,” Rosen says. In addition, irradiated mice treated with DIM had less reduction in red blood cells, white blood cells and platelets — side effects often seen in patients undergoing radiation treatment for cancer.

Rosen says this study points to two potential uses of the compound. “DIM could protect normal tissues in patients receiving radiation therapy for cancer, but could also protect individuals from the lethal consequences of a nuclear disaster.”

Rosen and study co-authors Saijun Fan, PhD, and Milton Brown, MD, PhD, are co-inventors on a patent application that has been filed by Georgetown University related to the usage of DIM and DIM-related compounds as radioprotectors.

This work was supported by U.S. Public Health Service Grants (CA104546 and CA150646), a grant from the Center for Drug Discovery at Georgetown University, and other Georgetown funding.

About Georgetown University Medical Center

Georgetown University Medical Center (GUMC) is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis — or “care of the whole person.” The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization, which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Media Contact

Karen Mallet EurekAlert!

More Information:

http://www.georgetown.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors