Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Internal medicine and how it correlates to orthopedics and anatomy

An examination of internal medicine reveals that it can be applied to many other fields of medicine, such as orthopedics, because of the human anatomy.

When the human anatomy exhibits congenital or developed flaws that restrict locomotor activity or the ability to function, we can rely on help from the fields of orthopedics and internal medicine. Various conditions such as arthritis, arthrosis, fractures, scoliosis or inflammation of the joints belong to the field of orthopedics, whereas internal medicine focuses on the prevention and diagnosis of such conditions. A fracture that restricts the human anatomy such that orthopedic surgery is required, which in turn leads to internal medicine treatment, highlights how closely the anatomy is tied to orthopedics or internal medicine. Knowledge of the human anatomy allows orthopedic as well as internal medicine specialists carry out appropriate rehabilitation measures. Through blood pressure readings, long-term EKG tests or rectoscopy, internal medicine provides information about the condition of the patient (related to the anatomy). At the same time, this is valuable information for choosing orthopedic treatment methods. These medical fields - orthopedics and internal medicine - exhibit a high degree of interdependency and symbiosis that is always related to the patient's anatomy. Therapies are meanwhile being employed that integrate both internal medicine andorthopedics into the treatment. In the long run, the human anatomy leads to a natural symbiosis between orthopedics and internal medicine because treatment approaches essentially demand the use of both fields.

Anatomy's sphere of activity

Whennephrology (internal medicine) identifies a problem caused by hip dysplasia (orthopedics) , the only path to finding an appropriate solution is to involve both medical fields. The goal of rehabilitation therapy is to relieve chronic pain or restricted body functions through a combination of anatomy, orthopedics and internal medicine expertise. Internal medicine looks at issues involving the immune and vascular systems, respiratory organs, possible infections, cardiology and oncology. In contrast,orthopedics involves surgical procedures (prosthetics for instance), the manufacture of a locomotor apparatus (for bones, muscles, ligaments or joints) or arthrosis treatments. These two fields of medicine rely on basic knowledge of the human anatomy. Without information about our anatomy, a balanced approach that involves both internal medicine and orthopedics would not be possible.

Orthopedics and internal medicine - complementary fields

If internal medicine determines that a hip prosthesis would lead to pulmonary (respiratory organs) problems because of the patient's anatomy, new measures must be carried out. Themutual interdependency of orthopedics and internal medicine is very specific and oriented toward the profile of the patient's anatomy. Successful treatment always requires a comprehensive profile of the patient's anatomy to enable internal medicine to provide the results (documented in the patient's record) to orthopedic specialists and to ensure that corresponding measures are carried out. Every well-trained orthopedic specialist requires the results of internal medicine examinations to gain a better picture of the patient's anatomy.

Anatomy is the focus

"Anatomy" is the key phrase. This is because anatomy, which is always tied to the patient's profile, provides information regarding to what extent internal medicine or orthopedics can find a solution. For this reason it is extremely important that internal medicine specialists have a detailed, exact picture of the patient's anatomy to allow them to determine what role the anatomy plays in the patient's profile.

Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>