Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common genetic mutation increases sodium retention, blood pressure

30.05.2012
Nearly 40 percent of the small adrenal tumors that cause big problems with high blood pressure share a genetic mutation that causes patients to retain too much sodium, researchers report.

The study of 47 human, benign adrenal gland tumors also showed a mutation of the gene KCNJ5 is twice as likely to occur in women – 71 versus 29 percent – as it points to potential new treatments for some patients who don't respond to current hypertension regimens, said Dr. William E. Rainey, Scientific Director of the Adrenal Center at Georgia Health Sciences University.

Addititionally, when scientists put the mutated gene into an adrenal cell, it immediately starts producing the sodium-retaining hormone aldosterone. "We found it turned on a whole series of genes that cause the cell to produce aldosterone," Rainey said.

Typically, KCNJ5 appears to help normalize levels of the sodium-retaining hormone aldosterone by regulating how much potassium is pumped in and out of aldosterone-producing cells on the outer layer of the adrenal glands. Abnormal protein produced by the mutated gene alters the cells' electrical status.

"When this gene has a mutation, the cells lose control and just start producing aldosterone all the time," said Rainey, corresponding author of the study in the Journal of Clinical Endocrinology and Metabolism.

"The combination of too much salt and too much of this hormone leads to high blood pressure and tissue damage," said Rainey. He notes that the vast majority of the 311 million Americans consume too much salt, even if they never pick up a salt shaker, because of high content in breads, processed and fast foods and the like. An estimated 33 percent of Americans are hypertensive and an estimated 1 in 10 have adrenal problems as the cause.

A 2011 study led by Yale University and published in the journal Science showed that the tumors had a KCNJ5 mutation. GHSU researchers, along with colleagues at University of Michigan Medical School, Ann Arbor; University of Torino and University of Padova, Italy; University of Texas Southwestern Medical Center, Dallas; and Keio University,Tokyo linked the gene to aldosterone production.

Now the GHSU Adrenal Center is moving forward with studies to determine why women with adrenal tumors have more of the mutated gene – Rainey suspects it's estrogen-related. They also want to know if any of the dozen potassium channel inhibitors already on the market for heart and other disorders can help these patients as well.

Rainey said the gene mutation is one that occurs after birth – when most mutations occur – and the cause is unknown. About half the people who produce too much aldosterone have tumors, which tend to affect only one of the 2-by-1-inch glands that sit like hats on top of the two kidneys and surgical removal typically fixes their problem. Unexplained enlargement of both glands likely also has a genetic basis and may be medically managed, Rainey said.

One of the many goals of the GHSU Adrenal Center, one of a handful of multidisciplinary centers in the nation, is to better define genes which can result in whole families being impacted. To date, only three genes are known to contribute to the familial form. Aldosterone excess, by whatever means, also is suspected when people under age 40 become hypertensive for no other obvious reason.

The adrenals are extremly efficient glands, producing three additional hormone groups that help maintain homeostasis including cortisol needed for glucose/carbohydrate metabolism, weak sex steroids that likely are the major source of androgens, or male hormones, in women; and the fight or flight hormones epinephrine and norepinephrine. In the event both glands are removed, the vital hormones must be supplemented, Rainey said.

Patients typically come to the GHSU Adrenal Center with unexplained hypertension that isn't responding to traditional therapy. "They are typically on three or four medications and their blood pressure is still not under control," said Dr. Michael A. Edwards, Clinical Director of the Adrenal Center and Chief of the MCG Section of Minimally Invasive and Digestive Diseases Surgery. Computerized tomography done for other reasons can detect over-sized glands or tumors that may be the culprit.

For more information, visit http://www.mcghealth.org/adrenal/GhsuContentPage.aspx?nd=367

Toni Baker | EurekAlert!
Further information:
http://www.georgiahealth.edu

More articles from Health and Medicine:

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>