Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common cancers evade detection by silencing parts of immune system cells

05.03.2014

Johns Hopkins researchers identify set of genes that can be turned back on and potentially allow for more effective treatment

Johns Hopkins researchers say they have identified a set of genes that appear to predict which tumors can evade detection by the body's immune system, a step that may enable them to eventually target only the patients most likely to respond best to a new class of treatment.

Immune therapy for ovarian, breast and colorectal cancer — treatments that encourage the immune system to attack cancer cells as the foreign invaders they are — has so far had limited success, primarily because the immune system often can't destroy the cancer cells. In a report published online Feb. 16 in the journal Oncotarget, the Johns Hopkins team says it has identified genes that have been repressed through so-called epigenetic changes — modifications that alter the way genes function without changing their DNA sequence — which help the cells to evade the immune system. The researchers were able to reverse these epigenetic changes with the use of an FDA-approved drug, forcing the cancer cells out of hiding and potentially making them better targets for the same immune therapy that in the past may have failed.

"Chemotherapy often works, but in most cases, it eventually stops working," says one of the study leaders, Nita Ahuja, M.D., an associate professor of surgery, oncology and urology at the Johns Hopkins University School of Medicine. "What if we could get the immune system itself to fight the tumors and keep the cancer in check forever? That is the ultimate goal, and this gene panel may get us closer." The other study leader is Cynthia Zahnow, Ph.D., an associate professor of oncology at Johns Hopkins.

... more about:
»Cancer »Medicine »breast »colorectal »genes »therapy

The researchers treated 63 cancer cell lines (26 breast, 14 colorectal and 23 ovarian) with low-dose 5-azacitidine (AZA), an FDA-approved drug for myelodysplastic syndrome, that reverses epigenetic changes by stripping off the methyl group that silences the gene. They identified a panel of 80 biological pathways commonly increased in expression by AZA in all three cancers, finding that 16 of them (20 percent) are related to the immune system. These pathways appeared to be dialed down in the cancer cells, allowing for evasion. After treatment with AZA, the epigenetic changes were reversed, rendering the cancer cells unable to evade the immune system any longer.

The researchers found that these immune system pathways were suppressed in a large number of primary tumors — roughly 50 percent of ovarian cancers studied, 40 percent of colorectal cancers and 30 percent of breast cancers. The findings may be applicable to other cancer types such as lung cancer or melanoma, they say.

After looking in cell lines, the Johns Hopkins team extended their work to human tumor samples. Again they found evidence that these immune system pathways are turned down in some patients and, that these immune genes can be turned back up in a small number of patients with breast and colorectal cancer who had been treated with epigenetic therapies.

"Most of us haven't thought of these common cancers as being immune-driven," Ahuja says. "We haven't held out much hope for immune therapy to work in them because before you can enter cancer cells to knock them down, you have to be able to get inside. They were locked and now we may have identified a key."

The hope is that clinicians could eventually pinpoint which patients with these common cancers would benefit from a dose of AZA followed by an immune therapy that stimulates the immune system to attack cancer cells.

"This would tell us which patients' tumors are hiding from the immune system and will allow us to use all of our tools to flush that cancer out," she says.

While most of the work was done in the lab, Ahuja says her colleagues have already started to put the panel into use in a lung cancer trial. Six patients were treated first with epigenetic therapy followed by immune therapy. Though the sample is small and time has been short, four of the patients have had their cancer suppressed for many months.

"If this works — and we don't know yet if it will — this could have the potential to control someone's cancer for good," she says.

###

Other Johns Hopkins researchers involved in the study include Huili Li, Ph.D.; Katherine B. Chiappinelli, Ph.D.; Angela A. Guzzetta, M.D.; Hariharan Easwaran, Ph.D.; Ray-Whay Chiu Yen, M.S.; Rajita Vatapalli; Michael J. Topper; Jianjun Luo; Roisin M. Connolly, M.B.B.S.; Nilofer S. Azad, M.D.; Vered Stearns, M.D.; Drew M. Pardoll, M.D., Ph. D.; and Stephen B. Baylin, M.D. Researchers from the University of Pittsburgh, the University of Southern California and the University of California-Los Angeles also contributed to the study.

The study was supported by grants from the National Institutes of Health's National Cancer Institute (CA058184 and K23 CA127141), Stand Up To Cancer (SU2C) Epigenetic Dream Team, Hodson Trust, the Samuel Waxman Cancer Research Foundation, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, EIF Lee Jeans, the American College of Surgeons/Society of University Surgeons, the Irving Hansen Foundation, the Safeway Foundation and LCOR.

Ahuja and Zahnow both consult for Celgene, the company that makes AZA.

Johns Hopkins Medicine (JHM), headquartered in Baltimore, Maryland, is a $6.7 billion integrated global health enterprise and one of the leading health care systems in the United States. JHM unites physicians and scientists of the Johns Hopkins University School of Medicine with the organizations, health professionals and facilities of The Johns Hopkins Hospital and Health System. JHM's vision, "Together, we will deliver the promise of medicine," is supported by its mission to improve the health of the community and the world by setting the standard of excellence in medical education, research and clinical care. Diverse and inclusive, JHM educates medical students, scientists, health care professionals and the public; conducts biomedical research; and provides patient-centered medicine to prevent, diagnose and treat human illness. JHM operates six academic and community hospitals, four suburban health care and surgery centers, and more than 30 primary health care outpatient sites. The Johns Hopkins Hospital, opened in 1889, was ranked number one in the nation for 21 years in a row by U.S. News & World Report.

Stephanie Desmon |
Further information:
http://www.jhmi.edu

Further reports about: Cancer Medicine breast colorectal genes therapy

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>