Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New combination therapy could deliver powerful punch to breast cancer

18.11.2009
A powerful new breast cancer treatment could result from packaging one of the newer drugs that inhibits cancer's hallmark wild growth with another that blocks a primordial survival technique in which the cancer cell eats part of itself, researchers say.

While they are powerful killers of some breast cancer cells, new drugs called histone deacetylase inhibitors, or HDAC inhibitors, also increase self-digestion, or autophagy, in surviving, mega-stressed cells, Medical College of Georgia Cancer Center researchers reported during the Molecular Targets and Cancer Therapeutics International Conference this week in Boston. The conference is sponsored by the American Association for Cancer Research, the National Cancer Institute and the European Organisation for Research and Treatment of Cancer.

"To meet the energy demands of growth and survival, cancer cells start eating up their own organelles, so that surviving cells become dependent on this autophagy," says Dr. Kapil Bhalla, director of the MCG Cancer Center.

"By also using autophagy inhibitors, we pull the rug out from under them. The only way out is death," he says.

Researchers showed the potent HDAC inhibitor panobinostat's impact on autophagy in human breast cancer cells in culture as well as those growing in the mammary fat pads of mice. When they added the anti-malaria drug chloroquine, which inhibits autophagy, breast cancer kill rates increased dramatically.

"As breast cancer is growing, it's developing these mechanisms of resistance to death," says Dr. Bhalla, Cecil F. Whitaker, Jr., M.D./Georgia Research Alliance Eminent Scholar in Cancer and Georgia Cancer Coalition Distinguished Cancer Scholar. "What we are saying is there is a new way to affect a resistant population."

Fundamentals of survival and growth put a lot of stress on cancer cells. Their drive for both comes from the activation of oncogenes and loss of tumor suppressor genes that leaves cells looking desperately for ways to support their marching orders. Much like the extreme measures plane crash victims may take while stranded on a frozen mountaintop, autophagy becomes a survival strategy for the most stressed out cancer cells.

Stress kicks in as cancer cells quickly outgrow available blood supplies and nutrients, which stimulates new blood vessel formation and consumption of unprecedented amounts of fuel. Alterations in gene copy numbers create an imbalance in gene products or proteins adding to the stress of cancer cells, which are starting to make improperly folded – and functioning – proteins.

Protein degradation gets revved up and cells also start making more heat shock proteins which are supposed to help properly fold proteins and protect against cell death, a stress cause and effect Dr. Bhalla showed nearly a decade ago. He suspected then the connection he just found: promoting autophagy is one way heat shock proteins carry out their protective mission.

This is where HDAC inhibitors come into play: they promote acetylation or a modification in the key heat shock protein, hsp70, which further promotes autophagy. "Basically HDAC inhibitors promote acetylated hsp70 which promotes autophagy on which a stressed-out cancer cell depends," Dr. Bhalla says.

He notes that chloroquine, a known anti-malarial and inhibitor of autophagy, already is being paired with chemotherapy and radiation is some cancer clinical trials. But because of its significant side effects, new, more tolerable autophagy inhibitors need to be developed which can be combined with currently available anticancer agents, such as panobinostat, to attain superior therapeutic effect against breast cancer, Dr. Bhalla says.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>