Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Columbia engineers develop new method to diagnose heart arrhythmias

10.05.2011
First non-invasive technique to directly map electrical activation of the heart

Abnormalities in cardiac conduction, the rate at which the heart conducts electrical impulses to contract and relax, are a major cause of death and disability around the world. Researchers at Columbia Engineering School have been developing a new method, Electromechanical Wave Imaging (EWI), that is the first non-invasive technique to map the electrical activation of the heart.

Based on ultrasound imaging, EWI will enable doctors to treat arrhythmias more efficiently and more precisely. The study was published online in the May 9th Proceedings of the National Academy of Sciences.

Up until now, other research groups have mostly focused on measuring the electrical activation directly but invasively, through electrode contact, or non-invasively but indirectly, through complex mathematical modeling based on remote measurements. "This is an important breakthrough," said Elisa Konofagou, who led the research and is an associate professor of Biomedical Engineering and Radiology at Columbia University's Fu Foundation School of Engineering and Applied Science. "The approach we have chosen — to look at the minute deformations following the electrical activation of the heart — is both direct and noninvasive. Electromechanical Wave Imaging is also eminently translational as it can be incorporated into most ultrasound scanners already available in hospitals and clinics, and can be modified at little or no cost to use our technology."

Using their EWI method, the Columbia Engineering team imaged the heart with ultrasound five times faster than standard echocardiography and mapped the local deformations of the heart with their images. The researchers then looked at small regions of the heart (just a few millimeters squared) and measured how much these regions were stretched or compressed every 2/1000s of a second. This enabled them to precisely identify at what time each region of the heart began to contract, a.k.a the electromechanical activation, in all four chambers of the heart. They compared their maps with the electrical activation sequence and found they were closely correlated, both at the natural rhythm of the heart and when the heart was artificially paced.

Arrhythmias occur when the normal electrical activation sequence in the heart is disrupted and their prevalence is expected to rise, as people live longer. In some cases, effective treatments exist. For example, a pacemaker can be surgically placed or a catheter can be brought into the cardiac chambers and used to burn diseased regions of the heart or pacing leads can be implanted in the heart to bypass the diseased conduction system and replace it by artificial electrical activation. But doctors can't always tell where to ablate with a catheter or who will benefit from artificial electrical activation. EWI could help determine in advance which patients can benefit from these treatments or identify with more precision which regions of the heart should be ablated. It could also be used to adapt treatment parameters as the patient's condition evolves.

"Since ultrasound is so safe, portable, and low cost," added Dr. Konofagou, "we can imagine a future where most physicians can carry a portable ultrasound scanner the size of an iPhone and easily get a map of the activation of the heart during a routine visit." Her team has already begun to image patients with arrhythmias and compare their measurements with the gold standard of catheterization and non-contact electrode measurements. If this study is conclusive, they will then move to a larger clinical study.

The Columbia Engineering study has been supported by the National Institutes of Health.

Columbia Engineering

Columbia University's Fu Foundation School of Engineering and Applied Science, founded in 1864, offers programs in nine departments to both undergraduate and graduate students. With facilities specifically designed and equipped to meet the laboratory and research needs of faculty and students, Columbia Engineering is home to NSF-NIH funded centers in genomic science, molecular nanostructures, materials science, and energy, as well as one of the world's leading programs in financial engineering. These interdisciplinary centers are leading the way in their respective fields while individual groups of engineers and scientists collaborate to solve some of society's more vexing challenges.

Holly Evarts | EurekAlert!
Further information:
http://www.columbia.edu
http://www.engineering.columbia.edu/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>