Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cognitive deficits from concussions still present after 2 months

08.01.2013
University of Oregon researchers deploy sensitive brain-testing methods on injured high school athletes

The ability to focus and switch tasks readily amid distractions was compromised for up to two months following brain concussions suffered by high school athletes, according to a study at the University of Oregon.

Research team members, in an interview, said the discovery suggests that some athletes may need longer recovery periods than current practices dictate to lower the risk of subsequent concussions. Conventional wisdom, said lead author David Howell, a graduate student in the UO Department of Human Physiology, has typical recovery at seven to 10 days.

"The differences we detected may be a matter of milliseconds between a concussed person and a control subject, but as far as brain time goes that difference for a linebacker returning to competition too soon could mean the difference between another injury or successfully preparing to safely tackle an oncoming running back," Howell said.

The findings are based on cognitive exercises used five times over the two months with a pair of sensitive computer-based measuring tools -- the attentional network test and the task-switching test. The study focused on the effects of concussions to the frontal region of the brain, which is responsible for working, or short-term, memory and executive function, said Li-Shan Chou, professor of human physiology and director of the UO Motion Analysis Laboratory.

The study was published online ahead of print by Medicine & Science in Sports & Exercise, the official journal of the American College of Sports Medicine.

"If a person goes back to the playing field without a full recovery, that person is put into great danger of being re-injured," Chou said. "In any given season, if you suffer a concussion, the chances of your suffering a second one is three to six times higher and suffering a third is eight times higher. There are accumulations in this kind of injury. It doesn't go away easily."

A big unknown, the researchers said, is just how serious such injuries are for adolescents, whose brains are still developing. It could be the brain can recover more easily, or such injuries could continue to produce deficits that last a lifetime. "We just don't know," Chou said, adding that most previous studies have involved college-aged athletes and older adults.

Each year, there are 300,000 to 500,000 mild traumatic brain injury incidents, or concussions, with 100,000 tied to football, Chou said. He also cited a 2011 report from the Centers for Disease Control and Prevention that called such injuries a silent epidemic, with sports-related concussions in youths rising by 60 percent in the last decade. Another source of concussions, he added, is improvised explosive devices used in warfare.

Through an arrangement with Eugene-area schools, 20 high school athletes who had suffered a concussion -- primarily football players but also others from soccer, volleyball and wrestling -- were assessed within 72 hours of injury and then again one week, two weeks, a month and two months later. Each of the subjects, whose diagnosis was made by a certified athletic trainer and/or physician, was matched with a healthy control subject of the same sex, body size, age and sport.

"After two months following the concussions, these individuals were still significantly impaired in their executive function, compared to age-matched, activity-matched and gender-matched control populations," said co-author Louis Osternig, professor emeritus of human physiology and a fellow of the American College of Sports Medicine.

Osternig, also a certified athletic trainer, noted that self-reports by the subjects about how they were feeling sometimes were at odds with test results, which continued to show subtle deficits in cognitive functioning. The researchers also noted anecdotal reports from concussed athletes and their parents of declines in academic performance during the two-month period.

Additional data linking the deficits found in cognitive testing to the subjects' gait -- their task-shifting abilities while walking -- currently are being analyzed in the ongoing project, which is funded by the Department of Defense Telemedicine & Advanced Technology Research Center (W81XWH-11-1-0717), National Athletic Trainers Association, Veterans Administration and a translational research award from a joint UO-PeaceHealth Oregon Region collaboration program.

"By using tools from cognitive psychology, neuroscience and human physiology, this interdisciplinary team of scientists is improving our understanding of how brain trauma affects reaction time, and they are helping to create better outcomes for athletes, soldiers and others who are affected by concussions," said Kimberly Andrews Espy, vice president for research and innovation and dean of the graduate school. "UO researchers are working to improve the health and well-being of people in our local communities and throughout the world."

"The brain is the controller of our body movement," Chou said. "If you have a brain injury, are there any differences that we can pick up in the way a subject moves the body? In this lab, we are using motion analysis as a way to detect any deficiencies or abnormalities of body movement."

Chou said that his lab's goal, for now, is to disseminate the findings to the public and to talk to parents, athletic trainers and, perhaps, coaches directly to say: "These are the facts. We may not be able to draw any line on what clinically should or shouldn't be done. However, these are our observations based on our scientific testing."

Additional co-authors on the study were Ulrich Mayr, a UO psychology professor, and Paul van Donkelaar, a former UO human physiology professor now at the University of British Columbia. Both are experts on the testing methodologies.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Sources:

Li-Shan Chou
professor of human physiology
541-346-3391
chou@uoregon.edu
David Howell
graduate student
human physiology
541-346-1033
dhowell@uoregon.edu
Louis Osternig
541-346-3384
louiso@uoregon.edu
Links:
Chou faculty page: http://physiology.uoregon.edu/people/chou
Motion Analysis Laboratory: http://biomechanics.uoregon.edu/MAL/index.html
Osternig faculty page: http://physiology.uoregon.edu/people/osternig
Department of Human Physiology: http://physiology.uoregon.edu/
About the 2011 CDC report: http://www.cdc.gov/media/releases/2011/p1006_TBI_Youth.html

AUDIO (Similar summaries):

From David Howell: bit.ly/Vj5ySh
From Li-Shan Chou: bit.ly/VuyMxf
From Louis Osternig: bit.ly/S5clT2
Follow UO Science on Facebook:
http://www.facebook.com/UniversityOfOregonScience
Note: The University of Oregon is equipped with an on-campus television studio with satellite uplink capacity, and a radio studio with an ISDN phone line for broadcast-quality radio interviews. Call the Media Contact above to begin the process.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>