Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cobblestones fool innate immunity

29.11.2011
Coating the surface of an implant such as a new hip or pacemaker with nanosized metallic particles reduces the risk of rejection, and researchers at the University of Gothenburg, Sweden, can now explain why: they fool the innate immune system. The results are presented in the International Journal of Nanomedicine.

“Activation of the body’s innate immune system is one of the most common reasons for an implant being rejected,” explains Professor Hans Elwing from the University of Gothenburg’s Department of Cell and Molecular Biology. “We can now show why the body more easily integrates implants with a nanostructured surface than a smooth one.”

The researchers used a unique method to produce nanostructures on gold surfaces, creating gold particles just 10-18 nm in diameter and binding them to a completely smooth gold surface at carefully regulated distances. The result is something akin to a cobbled street in miniature.

Nanosized irregularities mimic body’s natural structures

Giving implants this cobbled surface reduces the activation of important parts of the innate immune system. This is because several of the proteins involved are of a similar size to these nanosized cobbles, and so do not change in appearance when they land on the surface. This gives the body a greater ability to integrate foreign objects such as implants, pacemakers and drug capsules into its own tissues, as well as reducing the risk of local inflammation.

“It may be that the innate immune system is designed to react to smooth surfaces, because these are not found naturally in the body,” says Elwing. “Some bacteria, on the other hand, do have a completely smooth surface.”

Modern nanotechnology makes it easy and cheap to surface-treat implants and drug capsules, but it will probably be several years before this becomes a reality in human medicine. The focus now is on customising titanium implants of various kinds.

Surface can be graded

“We’ve developed a graded surface with different cobbelstone package that we think can be used for bone implants,” says Elwing. “Bone is very hard on the outside but then gets softer, so it would be good to have hard integration on the surface and softer integration underneath. We reckon we can make titanium screws that are denser at the head of the screw so that they fuse best at the top. This kind of customisation is the future.”

Research into the body’s innate immune system was rewarded this year with the Nobel Prize in Physiology or Medicine.

The laboratory work was carried out at the University of Gothenburg, and the project is a collaboration between the BIOMATCELL centre of excellence in Gothenburg, SP Technical Research Institute of Sweden in Borås and Bactiguard AB in Stockholm.

The article “Immune complement activation is attenuated by surface nanotopography” by Mats Hulander, Anders Lundgren, Mattias Berglin, Mattias Ohrlander, Jukka Lausmaa and dx.doi.org/10.2147/IJN.S24578Hans Elwing was published in the International Journal of Nanomedicine:

Contact:
Hans-Björne Elwing, Department of Cell and Molecular Biology
Tel: +46 (0)31 786 2562
Mobile: +46 (0)733 604 607
hans.elwing@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>