Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol-lowering drugs may fight infectious disease

22.08.2017

Typhoid, Ebola use cholesterol to enter cells

That statin you've been taking to lower your risk of heart attack or stroke may one day pull double duty, providing protection against a whole host of infectious diseases, including typhoid fever, chlamydia, and malaria.


This digitally-colorized scanning electron microscopic (SEM) image shows Salmonella bacteria (red) invading an immune cell (yellow). Salmonella Typhi is the cause of typhoid fever. Researchers at Duke have discovered human genetic variation can impact both invasion of Salmonella into cells and typhoid fever risk in people.

Credit: CDC Public Health Image Library (NIAID)

Duke scientists have recently discovered that a gene variant that affects cholesterol levels could increase your risk of contracting typhoid fever. They also showed that a common cholesterol-lowering drug (ezetimibe or Zetia) could protect zebrafish against Salmonella Typhi, the culprit behind the nasty infection.

The findings, which appear the week of Aug. 21 in the Proceedings of the National Academy of Sciences, give insight into the mechanisms that govern human susceptibility to infectious disease. They also point to possible avenues to protect those who are most vulnerable to pathogens -- like the Salmonella bacteria -- that hijack cholesterol to infect host cells.

"This is just the first step," said Dennis C. Ko, M.D., Ph.D., senior author of the study and assistant professor of Molecular Genetics and Microbiology at Duke University School of Medicine. "We need to try this approach in different model organisms, such as mice, and likely with different pathogens, before we can consider taking this into the clinic. What's so exciting is that our study provides a blueprint for combining different techniques for understanding why some people are more susceptible to disease than others, and what can be done about it."

At the turn of the last century, the Irish immigrant Mary Mallon earned the name "Typhoid Mary" after she sickened more than 50 people in New York City. Mallon was apparently immune to the bacteria she carried, and many people who came into contact with the infamous cook never contracted the disease. What made them different?

Ko has long been intrigued by that question. However, trying to explain the differences between people when it comes to susceptibility to infectious disease can be tricky: you can't always know whether someone remains healthy because of their genetic constitution or lack of exposure, and even when everyone has been exposed, there are myriad other environmental factors that come into play.

So rather than let the real world run the experiment, Ko and his team used hundreds of cell lines from healthy human volunteers and exposed them to the exact same dose of Salmonella Typhi, which had been tagged with a green fluorescent marker. They then looked for genetic differences that distinguished cells that had higher rates of bacterial invasion from those that did not.

The researchers found that a single nucleotide of DNA in a gene called VAC14 was associated with the level of bacterial invasion in cells. When they knocked out the gene, the cells were invaded more readily and more of the cells glowed brightly with green bacteria. They also unexpectedly found that those more susceptible cells had higher levels of cholesterol, an essential component of cell membranes that Salmonella binds to invade host cells.

Ko wanted to see whether this genetic difference was relevant to the human population. By looking through the scientific literature, he decided to reach out to a researcher working in Vietnam, Dr. Sarah Dunstan, who had been studying typhoid fever in that country. When Dunstan tested DNA from subjects in a group of 1,000 Vietnamese, half of whom had typhoid fever and half of whom did not, she found that the VAC14 gene variant was associated with a moderately elevated risk of typhoid fever. The next step was investigating if there was a way to correct that susceptibility.

"Discovering the mechanism was important because plenty of people are on cholesterol-lowering drugs, especially statins for high cholesterol," said Ko. "We wondered if similar drugs could be given to reduce the risk of Salmonella infection."

Monica Alvarez, a graduate student in Ko's lab and lead author on the study, had some experience working with zebrafish, so they decided to start there. She added a cholesterol-lowering drug (ezetimibe or Zetia) to their water and then injected the fish with Salmonella Typhi. She found that the treated animals were more likely to clear the bacteria out of their system and survive.

Next, the researchers plan to perform similar experiments in mice and possibly try retrospective studies in humans already taking cholesterol-lowering drugs. They want to explore whether the approach can protect against other infectious diseases, and have already screened other pathogens known to rely on cholesterol at some point during infection.

"Our cell-based human genetic approach is a way for us to connect cell biology to human disease," said Ko. "By figuring out the mechanism, you can uncover possible therapeutic strategies that you wouldn't think about when just looking at the gene."

###

Funding for this research was provided by the Duke University Whitehead Scholarship, Butler Pioneer Award, National Institutes of Health (R01AI118903, K22AI093595, UL1TR001881, AI126693, HL069757, P50 GM115318), National Science Foundation pre-doctoral fellowship, Duke MGM SURE Fellowship, Australian National Health and Medical Research Council (Grant ID 1053407), Wellcome Trust (089276/Z/09/Z). DOI: 10.1073/pnas.1706070114

CITATION: "Human Genetic Variation in VAC14 Regulates Salmonella Invasion and Typhoid Fever Through Modulation of Cholesterol," Monica I. Alvarez, Luke C. Glover, Peter Luo, Liuyang Wang, Elizabeth Theusch, Stefan H. Oehlers, Eric M. Walton, Trinh Thi Bich Tram, Yu-Lin Kuang, Jerome I. Rotter, Colleen M. McClean, Nguyen Tran Chinh, Marisa W. Medina, David M. Tobin, Sarah J. Dunstan, and Dennis C. Ko. PNAS, Early Edition, Aug. 21, 2017.

Media Contact

Karl Bates
karl.bates@duke.edu
919-681-8054

 @DukeU

http://www.duke.edu 

Karl Bates | EurekAlert!

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>