Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Choice between two evils

13.06.2012
Multiple sclerosis continues to puzzle scientists in all sorts of ways. Now researchers from the University of Würzburg have managed to make some progress in the search for the causes of this disease. They have revealed that in order to avoid greater damage the brain accepts a lesser evil.

The “disease with 1000 faces” is how multiple sclerosis (MS) is sometimes described. The reason for this name is that the clinical picture can differ dramatically from patient to patient – in terms of both the progression of the disease and the symptoms suffered.

However, there is one finding that is the same in principle for everyone: multiple sclerosis is an autoimmune disease where one particular type of brain cell, known as an oligodendrocyte, is destroyed by the immune system. Oligodendrocytes form an insulating layer around the extensions of nerve cells that is required for efficient impulse conduction.

If this conduction is disturbed as a consequence of damage to the insulating layer, the nerves cannot transfer relevant “messages” as effectively as before. This is why multiple sclerosis sufferers often feel a tingling sensation in their extremities. Patients stumble more or have difficulties seeing. In extreme cases, they become incapable of moving around on their own and are confined to a wheelchair. According to the Multiple Sclerosis Society of Germany, around 2.5 million people worldwide have MS. The latest projections indicate that some 130,000 sufferers live in Germany; around 2,500 people are diagnosed with the disease each year.

Killer T cells are suspected of being a cause

The full details of what triggers the onset of the disease are not yet known. “Based on tests done on the brains of deceased MS patients, it has long been suspected that a certain type of lymphocyte, the killer T cell, is involved in destroying oligodendrocytes,” says Professor Thomas Hünig from the Institute of Virology and Immunobiology at the University of Würzburg. Together with scientists from Cologne and Dresden, Hünig and his colleague, Dr. Shin-Young Na, have now taken a closer look at this process and have made a surprising discovery. This is reported in the latest issue of the journal Immunity. They found that the brain itself allows the T cells to attack the myelin sheath under specific conditions – because by doing so it may be able to prevent greater damage to the sufferer.

Even though the findings from the brains of deceased MS patients point to a strong involvement by killer T cells, scientists have always had a problem with this: “In animal experiments, which are unavoidable for the development of new treatment strategies, there has been no convincing demonstration of an attack on the nerve sheaths that is mediated by killer T cells,” explains Hünig. For this reason, the research group made their search a little more complicated.

They infected mice in the laboratory with a specific species of bacteria – listeria –, which shares a protein with oligodendrocytes, and observed the consequences when peripheral parts of the body were infected and when the infection was confined to the brain.

The brain decides

The outcome: “With an infection in the periphery, the killer cells search for the pathogen all over the body, including the brain,” says Hünig. However, in this case the immune system is able to identify those killer cells that mistake the myelin sheaths for something alien because they recognize the protein the sheaths share with listeria and so attack. It fights the killer cells and destroys them. It is a different story when the infection is in the brain itself: “Then the attack is allowed, which destroys the protective myelin sheath and leads to the formation of the plaques you see with multiple sclerosis,” explains the scientist.

A kind of “trade-off” seems to be responsible for the difference in progression. The brain’s “decision” to allow the attack helps combat the pathogen. It would appear that the brain is applying the motto: better that a few infected cells are destroyed and nerve cell extensions are demyelized than that the pathogen spreads and may therefore kill the sufferer. However, in the absence of an infection with menacing pathogens, the brain “recognizes” that this is a misguided attack by killer T cells and destroys them. It is possible, though, that the brain may sometimes “overestimate” the threat posed by a microbial pathogen and may sacrifice the protective myelin sheath unnecessarily.

Next steps

“These findings could form the basis for future therapies focused on combating microbial pathogens in the brain as well as reducing the local inflammation they cause,” hopes Hünig. Since many researchers are convinced that viruses can trigger certain forms of multiple sclerosis, he believes it makes sense to continue to conduct research in this direction.

Oligodendrocytes Enforce Immune Tolerance of the Uninfected Brain by Purging the Peripheral Repertoire of Autoreactive CD8+ T Cells; Shin-Young Na, Andreas Hermann, Monica Sanchez-Ruiz, Alexander Storch, Martina Deckert and Thomas Hünig; Immunity, Published online: June 7, DOI: 10.1016/j.immuni.2012.04.009

Contact
Prof. Dr. Thomas Hünig, Department of Immunology, T: +49 (0)931 201-49951, e-mail: huenig@vim.uni-wuerzburg.de

Gunnar Bartsch | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: T cells immune system immunity killer T cells multiple sclerosis nerve cell

More articles from Health and Medicine:

nachricht When wheels and heads are spinning - DFG research project on motion sickness in automated driving
22.05.2019 | Technische Universität Berlin

nachricht A new approach to targeting cancer cells
20.05.2019 | University of California - Riverside

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>