Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Children at risk for schizophrenia show disordered brain networks Wayne State finds

14.03.2012
A team of neuroscientists led by a Wayne State University School of Medicine professor has discovered stark developmental differences in brain network function in children of parents with schizophrenia when compared to those with no family history of mental illness.

The study, led by Vaibhav Diwadkar, Ph.D., assistant professor of psychiatry and behavioral neurosciences and co-director of the Division of Brain Research and Imaging Neuroscience, was published in the March 2012 issue of the American Medical Association journal Archives of General Psychiatry and is titled, "Disordered Corticolimbic Interactions During Affective Processing in Children and Adolescents at Risk for Schizophrenia Revealed by Functional Magnetic Resonance Imaging and Dynamic Causal Modeling."

The results provide significant insight into plausible origins of schizophrenia in terms of dysfunctional brain networks in adolescence, demonstrate sophisticated analyses of functional magnetic resonance imaging (fMRI) data and clarify the understanding of developmental mechanisms in normal versus vulnerable brains. The resulting information can provide unique information to psychiatrists.

The study took place over three years, using MRI equipment at Harper University Hospital in Detroit. Using fMRI the researchers studied brain function in young individuals (8 to 20 years of age) as they observed pictures of human faces depicting positive, negative and neutral emotional expressions. Participants were recruited from the metropolitan Detroit area. Because children of patients are at highly increased risk for psychiatric illnesses such as schizophrenia, the team was interested in studying brain network function associated with emotional processing and the relevance of impaired network function as a potential predictor for schizophrenia.

To investigate brain networks, the researchers applied advanced analyses techniques to the fMRI data to investigate how brain regions dynamically communicate with each other. The study demonstrated that children at risk for the illness are characterized by reduced network communication and disordered network responses to emotional faces. This suggests that brain developmental processes are going awry in children whose parents have schizophrenia, suggesting this is a subgroup of interest to watch in future longitudinal studies.

"Brain network dysfunction associated with emotional processing is a potential predictor for the onset of emotional problems that may occur later in life and that are in turn associated with illnesses like schizophrenia," Diwadkar said. "If you clearly demonstrate there is something amiss in how the brain functions in children, there is something you can do about it. And that's what we're interested in."

The results don't show whether schizophrenia will eventually develop in the subjects. "It doesn't mean that they have it, or that they will have it," he said.

"The kids we studied were perfectly normal if you looked at them," he said. "By using functional brain imaging we are trying to get underneath behavior."

"We are able to do this because we can investigate dynamic changes in brain network function by assessing changes in the fMRI signal. This allowed us to capture dramatic differences in how regions in the brain network are interacting with each other," he said.

According to the National Alliance on Mental Illness, schizophrenia affects men and women with equal frequency, but generally manifests in men in their late teens or early 20s, and in women in their late 20s or early 30s.

Diwadkar worked with Wayne State medical student Sunali Wadehra, M.A., and colleagues at Harvard Medical School and the University of Pittsburgh School of Medicine. Global collaborator Simon Eickhoff, Dr.Med., of Research Center Jülich and the Institute of Clinical Neuroscience and Medical Psychology at Heinrich-Heine University Düsseldorf, in Germany, also provided significant insight.

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu

Julie O'Connor | EurekAlert!
Further information:
http://www.wayne.edu
http://www.research.wayne.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>