Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell division research expected to lead to containment of cancer cells and regenerative medical treatments

08.04.2015

Researchers in Singapore, for the first time in the world, replicate the contractile ring’s structure by isolating a refined protein and placing it within a cell-imitation capsule.

All organisms grow and develop through the regenerative ability of cell division. An indispensable ability for all living beings, it can be said that life is defined by this process. Research into the nature of this process is of significant importance in biology and medical science.


Image: Waseda University

When organisms undergo cell division, what is known as a contractile ring is created in the interior wall of a cell membrane. As this ring contracts, the cell is pinched into multiple daughter cells.

Although research in molecular and cellular biology has gradually shed light on the proteins that form and control the contractile ring, there are many aspects of its self-organizational structure that remain a mystery.

Professor Shin’ichi Ishiwata (Graduate School of Advanced Science and Engineering) and Research Assistant Makito Miyazaki’s (Research Institute for Science and Engineering) research team at the Waseda Bioscience Research Institute in Singapore (WABIOS) are the first in the world to replicate the contractile ring’s structure by isolating a refined protein and placing it within a cell-imitation capsule.

Furthermore, the team has reached an understanding of the self-organizational structure of the ring and the minimum requirements and physical conditions of its contraction properties. This achievement is expected to play a great role in understanding the overall workings of cell division.

If cell division can be fully understood, it will become possible to control this process. This is expected to lead to medical treatments in various fields that can for example, prevent cancer cells from multiplying, and promote the propagation of healthy cells. It is also possible that this research can be utilized to create artificial cells with self-propagation abilities.

The details of this research were published in the online English science magazine “Nature Cell Biology” on March 23.


Associated links
Waseda University article

Waseda University | Fraunhofer Research News
Further information:
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>