Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiac imaging in 2020

03.09.2008
New molecular imaging techniques aim at detection of earliest steps of disease development and therapy response

Molecular imaging aims at the use of imaging probes to visualize specific cellular or sub cellular processes that occur before changes in morphology and function. This is highly relevant because impairments of such processes often are precursors or earliest stages of cardiovascular disease.

They are also involved in the early response to therapy or may identify candidates most suitable for a specific therapy. Probes for multiple molecular pathways, including cardiac metabolism, cell death, neurotransmission, receptors, cell-matrix interaction and cell trafficking have been developed in early experimental work and are increasingly translated into the clinical arena.

Several different imaging techniques can be used for detection of molecular probes, including nuclear imaging, magnetic resonance imaging, ultrasound and optical imaging, although nuclear imaging techniques, and especially positron emission tomography (PET) are currently most promising because of their superior sensitivity for detection of small amounts of highly specific radioactive molecular probes in the body. The new generation of hybrid imaging system, which integrate PET with X-ray computed tomography (CT) will further refine the application of molecular imaging probes, because co registration with a high-resolution CT will allow for better localization of the specific molecular signal from PET.

Applications that are currently being tested in early clinical stages include the identification of individuals at risk for atherosclerotic plaque rupture, identification of risk for development of heart failure and/or fatal ventricular arrhythmia, and monitoring of novel therapies such as stem cell therapy or gene delivery.

The field is still in its infancy and strong translational efforts need to continue to make it a clinical reality in the next years. But there is a strong notion that, in the future era of personalized molecular medicine, molecular imaging will play a key role for guidance of clinical decision making based on individual disease biology.

ESC Press Office | EurekAlert!
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Neutrons produce first direct 3D maps of water during cell membrane fusion
21.09.2018 | DOE/Oak Ridge National Laboratory

nachricht Narcolepsy, scientists unmask the culprit of an enigmatic disease
20.09.2018 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Fraunhofer ISE with over 60 Contributions at the European PV Solar Energy Conference and Exhibition

21.09.2018 | Trade Fair News

558 million-year-old fat reveals earliest known animal

21.09.2018 | Earth Sciences

Neutrons produce first direct 3D maps of water during cell membrane fusion

21.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>