Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CAR-T immunotherapies may have a new player

29.06.2018

Study finds that natural killer cells engineered with chimeric antigen receptors are equally effective and bring different advantages with less toxicity

Emerging CAR-T immunotherapies leverage modified versions of patient's T-cells to target and kill cancer cells. In a new study, published June 28 online in Cell Stem Cell, researchers at University of California San Diego School of Medicine and University of Minnesota report that similarly modified natural killer (NK) cells derived from human induced pluripotent stem cells (iPSCs) also displayed heightened activity against a mouse model of ovarian cancer.


Natural killer cells are immune cells that eliminate infected, foreign and cancer cells.

Credit: NIAID

The findings are significant, say researchers, because NK cells may offer distinct advantages over T-cells, including the ability to safely deliver engineered NK cells in an off-the-shelf manner without patient matching.

"One of the main challenges of immunotherapy has been the clinical manufacture of modified cells," said senior author Dan Kaufman, MD, PhD, professor of medicine in the Division of Regenerative Medicine and director of cell therapy at UC San Diego School of Medicine. "We've shown that you can engineer iPSCs, create chimeric antigen receptor-expressing NK cells to better target refractory cancers that have resisted other treatments."

CAR-T cell-based immunotherapies have garnered considerable attention and investment in recent years. T-cells, a type of white blood cell, are extracted from a patient's blood, genetically modified with a chimeric antigen receptor (the CAR) to bind with a certain protein on the patient's cancer cells, grown in large numbers in a laboratory and then infused into the patient.

"NK cells offer significant advantages as they don't have to be matched to a specific patient," said Kaufman. "Additionally, one batch of iPSC-derived NK cells can be potentially used to treat thousands of patients, which means we can develop standardized, 'off-the-shelf' treatments and use these in combination with other cancer drugs."

Early testing of CAR-T therapies have shown promise -- and sometimes dramatic success -- but there are distinct limitations. First, cells must be isolated from each individual -- a process that takes significant time and money. Additionally, since T-cell therapy is designed to work only for that patient, some patients may not be able to have T cells collected, or they may not have time for this process before the tumor progresses. This means some patients who could potentially benefit will not be able to get CAR-T cell-based therapies.

Moreover, Kaufman noted CAR-T therapies have been associated with sometimes severe toxicities or adverse effects, including unexpected organ damage and death. Previous research by Kaufman and others suggest NK cells do not trigger similar toxicities -- and the latest paper found few adverse effects in mouse models.

"NK cells may just be safer to use," Kaufman said. Kaufman is now collaborating with scientists from San Diego-based Fate Therapeutics to scale up processes to progress to clinical trials.

In their research, the researchers tested CAR NK cells derived from human iPSCs in an ovarian cancer xenograft mouse model, comparing their anti-tumor activity against other versions of NK cells and CAR-T cells. The former demonstrated similar activity to CAR-T cells, but with less toxicity. Kaufman said data indicated ovarian cancer was a good first target, but that other solid tumors, such as breast cancer, brain tumors, and colon cancers, as well as blood cell cancers such as leukemias are also likely to be suitable targets of iPSC-derived NK cells.

###

Co-authors of the study include: Ye Li, UC San Diego; and David Hermanson and Branden S. Moriarty, University of Minnesota, Minneapolis.

Media Contact

Scott LaFee
slafee@ucsd.edu
858-249-0456

 @UCSanDiego

http://www.ucsd.edu 

Scott LaFee | EurekAlert!

Further reports about: CAR blood cell cancer cells immunotherapies mouse model ovarian ovarian cancer tumors

More articles from Health and Medicine:

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>