Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer-fighting drugs might also stop malaria early

26.08.2014

Scientists searching for new drugs to fight malaria have identified a number of compounds -- some of which are currently in clinical trials to treat cancer -- that could add to the anti-malarial arsenal.

Duke University assistant professor Emily Derbyshire and colleagues identified more than 30 enzyme-blocking molecules, called protein kinase inhibitors, that curb malaria before symptoms start.

By focusing on treatments that act early, before a person is infected and feels sick, the researchers hope to give malaria –- especially drug-resistant strains –- less time to spread.

The findings appear online and are scheduled to appear in a forthcoming issue of the journal ChemBioChem.

... more about:
»ChemBioChem »blood »drugs »liver »malaria »parasites »symptoms

Malaria is caused by a single-celled parasite called Plasmodium that spreads from person to person through mosquito bites. When an infected mosquito bites, parasites in the mosquito's saliva first make their way to the victim's liver, where they silently grow and multiply into thousands of new parasites before invading red blood cells -- the stage of the disease that triggers malaria's characteristic fevers, headaches, chills and sweats.

Most efforts to find safe, effective, low-cost drugs for malaria have focused on the later stage of the infection when symptoms are the worst. But Derbyshire and her team are testing chemical compounds in the lab to see if they can identify ones that inhibit malaria during the short window when the parasite is still restricted to the liver, before symptoms start.

One of the advantages of her team's approach is that focusing on the liver stage of the malaria lifecycle -- before it has a chance to multiply -- means there are fewer parasites to kill.

Using a strain of malaria that primarily infects rodents, Derbyshire and Jon Clardy of Harvard Medical School tested 1,358 compounds for their ability to keep parasites in the liver in check, both in test tubes and in mice.

"It used to be that researchers were lucky if they could identify one or two promising compounds at a time; now with advances in high-throughput screening technology we can explore thousands at once and identify many more," said Derbyshire, an assistant professor in the Departments of Chemistry and Molecular Genetics and Microbiology at Duke.

Focusing on a particular group of enzyme-blocking compounds called protein kinase inhibitors, they identified 31 compounds that inhibit malaria growth without harming the host. Several of the compounds are currently in clinical trials to treat cancers like leukemia and myeloma.

The same compounds that stopped the stage of malaria that lurks in the liver also worked against the stage that lives in the blood.

Malaria-free mice that received a single dose before being bitten by infected mosquitos were able to avoid developing the disease altogether.

Medicines for malaria have been around for hundreds of years, yet the disease still afflicts more than 200 million people and claims hundreds of thousands of lives each year, particularly in Asia and Africa. Part of the reason is malaria's ability to evade attack. One of the most deadly forms of the parasite, Plasmodium falciparum, has already started to outsmart the world's most effective antimalarial drug, artemisinin, in much of southeast Asia. Infections that used to clear up in a single day of treatment now take several days.

Diversifying the antimalarial arsenal could also extend the lifespan of existing drugs, since relying less heavily on our most commonly used weapons gives the parasite fewer opportunities to develop resistance, Derbyshire said.

Another advantage is that the compounds they tested suppress multiple malaria proteins at once, which makes it harder for the parasites to develop ways around them.

"That makes them like a magic bullet," she said.

###

The research was supported by Duke University, Harvard Medical School and the National Institutes of Health (Grant Number: GM099796)

CITATION: "Chemical interrogation of the malaria kinome," Derbyshire, E. and Clardy, J., et al. ChemBioChem, 2014. http://dx.doi.org/10.1002/cbic.201400025

Robin Ann Smith | Eurek Alert!
Further information:
http://www.duke.edu

Further reports about: ChemBioChem blood drugs liver malaria parasites symptoms

More articles from Health and Medicine:

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

nachricht New discoveries predict ability to forecast dementia from single molecule
12.12.2018 | UT Southwestern Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>