Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can chocolate, tea, coffee and zinc help make you more healthy?

02.11.2018

Ageing and a low life expectancy are caused, at least partly, by oxidative stress. A team of researchers led by Prof. Dr. Ivana Ivanović-Burmazović from the Chair of Bioinorganic Chemistry at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), together with researchers from the USA, have discovered that zinc can activate an organic molecule, helping to protect against oxidative stress. The results have now been published in Nature Chemistry.

Zinc is a trace mineral we need in order to remain healthy. FAU researchers working together with Prof. Dr. Christian Goldsmith from Auburn University, Alabama, USA, have discovered that zinc can protect against the superoxide responsible for oxidative stress when taken together with a component found in foodstuffs such as wine, coffee, tea and chocolate.


This component is a hydroquinone group found in polyphenols, in other words the plant substances responsible for smell and taste. Zinc activates the hydroquinone groups, producing natural protection against superoxide, a by-product of human cell respiration which damages the body’s own biomolecules, for example proteins or lipids, as well as the human genome. Superoxide is thought to have a role to play in the ageing process and a number of illnesses such as inflammation, cancer or neurodegenerative diseases.

New metal complex against superoxide

Hydroquinone alone is not capable of breaking down superoxide. If zinc and hydroquinone combine, however, a metal complex is created which imitates a superoxide dismutase enzyme (SOD). These enzymes protect the body from the degradation processes caused by oxidation and have an antioxidative effect. In this way, the superoxide can be metabolised and damage to the organism prevented; oxidative stress is avoided.

Chocolate, coffee etc. with added zinc

For the first time, the function of this enzyme has been copied without reverting to redox-active transition metals such as manganese, iron, copper or nickel. Whilst the metals could also have an antioxidative effect, any positive effects are quickly outweighed by the fact that if too much is taken they can even cause oxidative stress to increase.

Zinc is much less toxic than the transition metals mentioned above, making it possible for new medication or supplements to be created with considerably fewer side-effects. It would also be plausible to add zinc to food which contains hydroquinone naturally to boost the consumer’s health.

‘It is certainly possible that wine, coffee, tea or chocolate may well become be available in future with added zinc. However, any alcohol content whatsoever would destroy the positive effects of this combination,’ emphasises Ivana Ivanović-Burmazović.

Wissenschaftliche Ansprechpartner:

Further information:
Ivana Ivanović-Burmazović
Phone: +49 9131 8525428
ivana.ivanovic-burmazovic@fau.de

Originalpublikation:

DOI: https://doi.org/10.1038/s41557-018-0137-1

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Health and Medicine:

nachricht Genetic differences between strains of Epstein-Barr virus can alter its activity
18.07.2019 | University of Sussex

nachricht Machine learning platform guides pancreatic cyst management in patients
18.07.2019 | American Association for the Advancement of Science

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>