Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough by Temple researchers could lead to new treatment for heart attack

06.11.2013
The stop and start of blood flow to the heart during and after a heart attack causes severe damage to heart cells, reducing their capacity to function and potentially causing their death.

But a recent study led by researchers at Temple University School of Medicine suggests that it is possible to limit the extent of that damage using a drug. In experiments in mice that recapitulated a human clinical scenario, they discovered that inhibition of a heart protein called TNNI3K reduced damage from heart attack and protected the heart from further injury.

The findings have significant potential for translation into heart attack patients in a clinical setting. "Many times, what is done in a lab setting can't be done in patients," explained Ronald Vagnozzi, PhD, lead author on the new study, which appeared October 16 in Science Translational Medicine. "But we were interested in a real-world scenario."

Working with senior investigators Thomas L. Force, MD, Professor and Clinical Director at Temple University School of Medicine's (TUSM) Center for Translational Medicine, and Muniswamy Madesh, PhD, Assistant Professor in Temple's Department of Biochemistry, Cardiovascular Research Center, and Center for Translational Medicine, Vagnozzi created a real-world clinical scenario in mice by mimicking blockage of an artery to induce heart attack and then administering a TNNI3K inhibitor. When cardiac function was subsequently improved in treated mice versus untreated controls, Vagnozzi and colleagues realized that a TNNI3K inhibitor could have important clinical benefits for human patients.

"TNNI3K is found only in the heart, which makes it interesting biologically and therapeutically," Vagnozzi said. "Although its function was not well understood, TNNI3K lent itself to being a potential therapeutic target for heart attack."

The researchers found that TNNI3K expression is elevated in patients who are suffering from heart failure, which can develop in the years following heart attack. To explore the significance of that elevation, they engineered mice to overexpress TNNI3K. They also created a second set of engineered mice, in which the protein was deleted. They then measured the animals' response to heart attack.

When overexpressed, Vagnozzi and colleagues found that TNNI3K promoted the injury of heart tissue from ischemia (blockage of blood flow) and reperfusion (restoration of blood flow) during and after a heart attack. TNNI3K overexpression in heart cells encouraged the production of superoxide, a reactive molecule from mitochondria, and activated p38 mitogen-activated protein kinase (MAPK), an enzyme that responds to stress signals in cells. The combined result of those activities was impaired mitochondrial function and heart cell death, which worsened ischemia/reperfusion injury. The opposite occurred in mice in which TNNI3K had been deleted—superoxide production and p38 activation were reduced, and injury to the heart was limited. Reductions in heart dysfunction and fibrosis (hardening of heart tissue) were also observed.

The team next collaborated with the pharmaceutical company GlaxoSmithKline (GSK) to identify compounds that were capable of blocking TNNI3K activity. Treatment of wild-type (nonengineered) mice with the compounds following heart attack produced effects that were similar to those observed in mice with TNNI3K deletion.

The new findings open the way to a large-animal study and the development of a TNNI3K inhibitor that can be used in humans. According to Force, the team is planning to move ahead with a large-animal study, which will determine whether the drugs are effective in animals other than mice and allow for the development of pharmacological and safety profiles of the compounds. "Because TNNI3K is only expressed in the heart, drugs targeting it should be reasonably safe," Force noted.

A major aim of Temple's Center for Translational Medicine is facilitating the delivery of new medicines to patients in the clinic, which could happen for TNNI3K inhibitors, if they are proven safe and effective in the next round of animal studies. According to Vagnozzi, who is now at Cincinnati Children's Hospital Medical Center, the continued collaboratory effort between Temple and GSK will be a key component in moving the drugs into the clinic.

Vagnozzi and colleagues' paper was selected for F1000Prime, in which articles in biology and medical research are chosen and their importance rated by leading scientists and clinicians.

Other researchers contributing to the work include Gregory J. Gatto Jr., Lara S. Kallander, Victoria L. T. Ballard, Brian G. Lawhorn, Patrick Stoy, Joanne Philp, and John J. Lepore with the Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area Unit, GlaxoSmithKline; Nicholas E. Hoffman, Karthik Mallilankaraman, and Erhe Gao at Temple's Center for Translational Medicine; Alan P. Graves with Platform Technology and Sciences, GlaxoSmithKline; and Yoshiro Naito from the Cardiovascular Division, Department of Internal Medicine, Hyogo College of Medicine in Japan.

The research was jointly funded by National Heart, Lung, and Blood Institute grants HL-061688, HL-091799, HL-106380, and HL-086699; an American Heart Association predoctoral fellowship; a Shared Instrumentation Program grant, 1S10RR027327; and the Scarperi family.

About Temple Health

Temple Health refers to the health, education and research activities carried out by the affiliates of Temple University Health System and by Temple University School of Medicine.

Temple University Health System (TUHS) is a $1.4 billion academic health system dedicated to providing access to quality patient care and supporting excellence in medical education and research. The Health System consists of Temple University Hospital (TUH), ranked among the "Best Hospitals" in the region by U.S. News & World Report; TUH-Episcopal Campus; TUH-Northeastern Campus; Fox Chase Cancer Center, an NCI-designated comprehensive cancer center; Jeanes Hospital, a community-based hospital offering medical, surgical and emergency services; Temple Transport Team, a ground and air-ambulance company; and Temple Physicians, Inc., a network of community-based specialty and primary-care physician practices. TUHS is affiliated with Temple University School of Medicine.

Temple University School of Medicine (TUSM), established in 1901, is one of the nation's leading medical schools. Each year, the School of Medicine educates approximately 840 medical students and 140 graduate students. Based on its level of funding from the National Institutes of Health, Temple University School of Medicine is the second-highest ranked medical school in Philadelphia and the third-highest in the Commonwealth of Pennsylvania. According to U.S. News & World Report, TUSM is among the top 10 most applied-to medical schools in the nation.

Jeremy Walter | EurekAlert!
Further information:
http://www.temple.edu

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>