Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough in understanding how deadly pneumococcus avoids immune defenses

13.11.2018

Scientists at the University of Liverpool have discovered a new and important function of a toxin produced by disease-causing bacteria that could have significant implications for future vaccine design.

Streptococcus pneumoniae (the pneumococcus) is a major cause of life-threatening invasive diseases such as pneumonia, septicaemia and meningitis, and is responsible for more than one million deaths every year.


Image shows the structure of the pneumolysin toxin made up of its four domains in different colors.

Credit: UoL

Key to its disease-causing success is the action of a potent toxin called pneumolysin, which works by creating 'holes' in the membranes of human cells, and either killing them directly or causing significant tissue damage.

Until now, scientists believed that the effects of pneumolysin resulted purely from the binding of the toxin to cholesterol in host cell membranes.

A new study published in Nature Microbiology, however, shows that pneumolysin can also bind directly to a host cell receptor on specialised immune cells to suppress the immune response.

The study was a collaboration between the Bacterial Pathogenesis and Immunity Group at the University's Institute of Infection and Global Health and the Department of Microbiology, Tumour and Cell Biology at the Karolinska Institute in Stockholm.

Using specialised in vitro experiments in human cells and in vivo studies in mice, the team has shown that pneumolysin can bind directly to a host cell receptor called Mannose Receptor C type-1 (MRC-1) on immune cells, including macrophages and dendritic cells, causing them to reduce their production of molecules that promote inflammation and protective immunity. The bacteria can then survive more easily in the airways, as inflammation and immune cell activity is suppressed.

Professor Aras Kadioglu, who led the study in Liverpool said: "This is really a key moment in our understanding of how the pneumococcus causes disease.

First of all, because it breaks a long-standing dogma that pneumolysin can only bind to cholesterol, indeed the identification of a host receptor for pneumolysin has been the holy grail in the field for many decades, and secondly, because it changes our understanding of how the pneumococcus uses its toxin to manipulate and alter our immune response to its advantage. I am very excited by the potential of these new findings."

Dr Daniel Neill who is a joint first author, added: "Understanding how bacteria are able to promote infection via toxin production will help scientists to develop new ways of combatting serious infectious diseases. Several vaccines in development contain detoxified pneumolysin and it is important that we further explore how the newly-described receptor-binding activity might influence the immune responses induced by such vaccination."

Nicola Frost | EurekAlert!
Further information:
https://news.liverpool.ac.uk/2018/11/12/breakthrough-in-understanding-how-deadly-pneumococcus-avoids-immune-defences/
http://dx.doi.org/10.1038/s41564-018-0280-x

More articles from Health and Medicine:

nachricht When added to gene therapy, plant-based compound may enable faster, more effective treatments
18.10.2019 | Scripps Research Institute

nachricht Diabetes: A next-generation therapy soon available?
17.10.2019 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>