Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough: With a Chaperone, Copper Breaks Through

19.10.2010
TAU identifies features of copper transfer that may improve chemotherapy treatments

Information on proteins is critical for understanding how cells function in health and disease. But while regular proteins are easy to extract and study, it is far more difficult to gather information about membrane proteins, which are responsible for exchanging elements essential to our health, like copper, between a cell and its surrounding tissues.

Now Prof. Nir Ben-Tal and his graduate students Maya Schushan and Yariv Barkan of Tel Aviv University's Department of Biochemistry and Molecular Biology have investigated how a type of membrane protein transfers essential copper ions throughout the body. This mechanism, Schushan says, could also be responsible for how the body absorbs Cisplatin, a common chemotherapy drug used to fight cancer. In the future, this new knowledge may allow scientists to improve the way the drug is transferred throughout the body, she continues.

Their breakthrough discovery was detailed in a recent issue of PNAS (Proceedings of the National Academy of Sciences).

Cellular gatekeepers and chaperones

Most proteins are water soluble, which allows for easy treatment and study. But membrane proteins reside in the greasy membrane that surrounds a cell. If researchers attempt to study them with normal technology of solubilization in water, they are destroyed — and can't be studied.

Copper, which is absorbed into the body through a membrane protein, is necessary to the healthy functioning of the human body. A deficiency can give rise to disease, while loss of regulation is toxic. Therefore, the cell handles copper ions with special care. One chaperone molecule delivers the copper ion to an "entrance gate" outside the cell; another chaperone then picks it up and carries it to various destinations inside the cell.

The researchers suggest that this delicate system is maintained by passing one copper ion at a time by the copper transporter, allowing for maximum control of the copper ions. "This way, there is no risk of bringing several copper ions into the protein at the same time, which ultimately prevents harmful chemical reactions between the ions and the abundant chemical reagents within the cell," explains Prof. Ben-Tal. Once the ion has passed through the transporter into the cell, the transporter is ready to receive another copper ion if necessary.

Improving cancer drugs — and more

The mechanism which transfers copper throughout the body may also be responsible for the transfer of the common chemotherapy drug Cisplatin. By studying how copper is transferred throughout the body, researchers may also gain a better understanding of how this medication and others are transferred into the cell.

With this information, says Prof. Ben-Tal, scientists could improve the transfer of the drug throughout the body, or develop a more effective chemotherapy drug. And that's not the only pharmaceutical dependent on the functioning of membrane proteins. "Sixty percent of drugs target membrane proteins," he explains, "so it's critical to learn how they function."

This work was done in collaboration with Prof. Turkan Haliloglu from Bogazici University, Istanbul.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org/site/News2?page=NewsArticle&id=13141

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>