Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Research: Millimeter-precise mapping of entrained brain oscillations

22.10.2015

Brain Research: Tübingen neuroscientists perform millimeter-precise mapping of entrained brain oscillations during transcranial alternating-current stimulation

Transcranial electrical stimulation has been used for many years in the treatment of neurological and psychiatric disorders, such as depression, epilepsy or stroke. However, the exact mechanisms underlying stimulation effects are largely unknown.

Stimulation artifacts impeded exact assessment of neuromagnetic activity, particularly when the applied currents alternated their polarity. Scientists in Tübingen, Germany, have now introduced a novel stimulation method during whole-head magnetoencephalography (MEG) that allows millimeter precise mapping of entrained brain oscillations during transcranial alternating current stimulation (tACS). The new method promises to elucidate the underlying mechanisms of tACS and to improve stimulation strategies in the context of clinical applications.

The impact of electric currents on the human brain has been known for centuries and is increasingly used in the treatment of various diseases, such as severe depression, stroke, epilepsy, Parkinson's disease or chronic pain. Particularly the application of weak electric currents through two or more scalp electrodes known as transcranial DC or AC stimulation (tDCS/tACS) was increasingly investigated in their clinical efficacy and applicability.

However, the exact underlying mechanisms of tDCS and tACS are largely unknown as stimulation artifacts impeded assessment of physiological brain activity. Only in 2013, scientists at the University of Tübingen, Germany, managed in collaboration with the National Institutes of Health (NIH), USA, to assess millisecond-to-millisecond neuromagnetic activity while the brain of a human subjects underwent transcranial DC stimulation (Soekadar et al. 2013, Nature Communications).

Despite this success that allows for investigating the immediate effects of tDCS on brain oscillations (Garcia-Cossio et al. 2015, NeuroImage), artifact-free reconstruction of brain activity during AC stimulation remained unfeasible. It is assumed that tACS exerts its effect by synchronizing the phase of brain oscillations to the stimulation signal. During such tACS-induced entrainment of brain oscillations, stimulation artifacts could not be reliably differentiated from physiological neuromagnetic brain activity.

In their most recent study published today in NeuroImage (Witkowski et al. 2015), the same group has now succeeded to precisely map tACS-entrained brain oscillations using of a novel stimulation method allowing for reliable differentiation of neuromagnetic brain rhythms and tACS-related stimulation artifacts. The authors report that amplitude modulation of AC currents applied at frequencies beyond the physiological range of brain oscillations (>150Hz) avoided contamination of physiological frequency bands while such stimulation exerted a distinct entrainment effect at the modulation frequency.

Using this method enabled the scientists to precisely identify brain areas influenced by the stimulation including areas immediately underneath and in proximity of the stimulation electrodes. The researchers hope that the new approach will now help to elucidate the underlying mechanisms of tACS and other stimulation paradigms and improve its clinical efficacy.

Particularly "to adapt the stimulation to the individual anatomy and specific neurophysiological effects" are important perspectives of the new method according to Dr. Surjo R. Soekadar, head of the working group Applied Neurotechnology at the University Hospital Tübingen. "As a next step, it is conceivable that the stimulation will be adapted to the individual brain ac-tivity in real time. Such closed-loop stimulation promises to provide better control of the stimulation effects than classical stimulation protocols", adds Matthias Witkowski, lead author of the study.

Contact:

Surjo R. Soekadar, MD
University of Tübingen
Department for Psychiatry and Psychotherapy & Institute of Medical Psy-chology and Behavioral Neurobiology
Applied Neurotechnology Lab
surjo.soekadar@uni-tuebingen.de
phone: +49 7071 29-82624

Publications:

Witkowski M, Cossio EG, Chander BS, Braun C, Birbaumer N, Robinson SE, Soekadar SR. Mapping entrained brain oscillations during transcra-nial alternating current stimulation (tACS). Neuroimage. 2015 (in press). pii: S1053-8119(15)00934-9. doi: 10.1016/j.neuroimage.2015.10.024.

Garcia-Cossio E, Witkowski M, Robinson SE, Cohen LG, Birbaumer N, Soekadar SR. Simultaneous transcranial direct current stimulation (tDCS) and whole-head magnetoencephalography (MEG): assessing the impact of tDCS on slow cortical magnetic fields. Neuroimage. 2015 (in press). pii: S1053-8119(15)00891-5. doi: 10.1016/j.neuroimage.2015.09.068.

Soekadar SR, Witkowski M, Cossio EG, Birbaumer N, Robinson SE, Cohen LG. In vivo assessment of human brain oscillations during application of transcranial electric currents. Nat Commun. 2013;4:2032. doi: 10.1038/ncomms3032.

Dr. Ellen Katz | idw - Informationsdienst Wissenschaft
Further information:
http://www.medizin.uni-tuebingen.de/

Further reports about: Brain Research NeuroImage Neurotechnology STROKE electrodes human brain oscillations

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>