Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain may play key role in blood sugar metabolism and development of diabetes

07.11.2013
Normal blood sugar regulation is a partnership between the pancreas and the brain

A growing body of evidence suggests that the brain plays a key role in glucose regulation and the development of type 2 diabetes, researchers write in the Nov. 7 issue of the journal Nature.

If the hypothesis is correct, it may open the door to entirely new ways to prevent and treat this disease, which is projected to affect one in three adults in the United States by 2050.

In the paper, lead author Dr. Michael W. Schwartz, director of the Diabetes and Obesity Center of Excellence at the University of Washington in Seattle, and his colleagues from the Universities of Cincinnati, Michigan, and Munich, note that the brain was originally thought to play an important role in maintaining normal glucose metabolism With the discovery of insulin in the 1920s, the focus of research and diabetes care shifted to almost exclusively to insulin. Today, almost all treatments for diabetes seek to either increase insulin levels or increase the body's sensitivity to insulin.

"These drugs," the researchers write, "enjoy wide use and are effective in controlling hyperglycemia [high blood sugar levels], the hallmark of type 2 diabetes, but they address the consequence of diabetes more than the underlying causes, and thus control rather than cure the disease."

New research, they write, suggests that normal glucose regulation depends on a partnership between the insulin-producing cells of the pancreas, the pancreatic islet cells, and neuronal circuits in the hypothalamus and other brain areas that are intimately involved in maintaining normal glucose levels. The development of diabetes type 2, the authors argue, requires a failure of both the islet-cell system and this brain-centered system for regulating blood sugar levels .

In their paper, the researchers review both animal and human studies that indicate the powerful effect this brain-centered regulatory system has on blood glucose levels independent of the action of insulin. One such mechanism by which the system promotes glucose uptake by tissues is by stimulating what is called "glucose effectiveness." As this process accounts for almost 50 percent of normal glucose uptake, it rivals the impact of insulin-dependent mechanisms driven by the islet cells in the pancreas.

The findings lead the researchers to propose a two-system model of regulating blood sugar levels composed of the islet-cell system, which responds to a rise in glucose levels by primarily by releasing insulin, and the brain-centered system that enhances insulin-mediated glucose metabolism while also stimulating glucose effectiveness.

The development of type 2 diabetes appears to involve the failure of both systems, the researchers say. Impairment of the brain-centered system is common, and it places an increased burden on the islet-centered system. For a time, the islet-centered system can compensate, but if it begins to fail, the brain-centered system may decompensate further, causing a vicious cycle that ends in diabetes.

Boosting insulin levels alone will lower glucose levels, but only addresses half the problem. To restore normal glucose regulation requires addressing the failures of the brain-centered system as well. Approaches that target both systems may not only achieve better blood glucose control, but could actually cause diabetes to go into remission, they write.

Reference: Michael W. Schwartz, Randy J. Seeley, Matthias H. Tscho, Stephen C. Woods, Gregory J. Morton, Martin G. Myers, & David D'Alessio. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature. 2013;503(7474). doi:10.1038/nature12709

This work was partly funded by National Institutes of Health (NIH) grants DK083042, DK093848 and DK089053, and the Nutrition Obesity Research Center and Diabetes Research Center at the University of Washington, and the Helmholtz Alliance ICEMED (Imaging and Curing Environmental Metabolic Diseases), through the Initiative and Networking Fund of the Helmholtz Association.

Michael McCarthy | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>