Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New brain-machine interface moves a paralyzed hand

20.04.2012
New technology bypasses spinal cord and delivers electrical signals from brain directly to muscles

A new Northwestern Medicine brain-machine technology delivers messages from the brain directly to the muscles -- bypassing the spinal cord -- to enable voluntary and complex movement of a paralyzed hand. The device could eventually be tested on, and perhaps aid, paralyzed patients.

"We are eavesdropping on the natural electrical signals from the brain that tell the arm and hand how to move, and sending those signals directly to the muscles," said Lee E. Miller, the Edgar C. Stuntz Distinguished Professor in Neuroscience at Northwestern University Feinberg School of Medicine and the lead investigator of the study, which was published in Nature. "This connection from brain to muscles might someday be used to help patients paralyzed due to spinal cord injury perform activities of daily living and achieve greater independence."

The research was done in monkeys, whose electrical brain and muscle signals were recorded by implanted electrodes when they grasped a ball, lifted it and released it into a small tube. Those recordings allowed the researchers to develop an algorithm or "decoder" that enabled them to process the brain signals and predict the patterns of muscle activity when the monkeys wanted to move the ball.

These experiments were performed by Christian Ethier, a post-doctoral fellow, and Emily Oby, a graduate student in neuroscience, both at the Feinberg School of Medicine. The researchers gave the monkeys a local anesthetic to block nerve activity at the elbow, causing temporary, painless paralysis of the hand. With the help of the special devices in the brain and the arm – together called a neuroprosthesis -- the monkeys' brain signals were used to control tiny electric currents delivered in less than 40 milliseconds to their muscles, causing them to contract, and allowing the monkeys to pick up the ball and complete the task nearly as well as they did before.

"The monkey won't use his hand perfectly, but there is a process of motor learning that we think is very similar to the process you go through when you learn to use a new computer mouse or a different tennis racquet. Things are different and you learn to adjust to them," said Miller, also a professor of physiology and of physical medicine and rehabilitation at Feinberg and a Sensory Motor Performance Program lab chief at the Rehabilitation Institute of Chicago.

Because the researchers computed the relationship between brain activity and muscle activity, the neuroprosthesis actually senses and interprets a variety of movements a monkey may want to make, theoretically enabling it to make a range of voluntary hand movements.

"This gives the monkey voluntary control of his hand that is not possible with the current clinical prostheses," Miller said.

The Freehand prosthesis is one of several prostheses available to patients paralyzed by spinal cord injuries that are intended to restore the ability to grasp. Provided these patients can still move their shoulders, an upward shrug stimulates the electrodes to make the hand close, a shrug down stimulates the muscles to make the hand open. The patient also is able to select whether the prosthesis provides a power grasp in which all the fingers are curled around an object like a drinking glass, or a key grasp in which a thin object like a key is grasped between the thumb and curled index finger.

In the new system Miller and his team have designed, a tiny implant called a multi-electrode array detects the activity of about 100 neurons in the brain and serves as the interface between the brain and a computer that deciphers the signals that generate hand movements.

"We can extract a remarkable amount of information from only 100 neurons, even though there are literally a million neurons involved in making that movement," Miller said. "One reason is that these are output neurons that normally send signals to the muscles. Behind these neurons are many others that are making the calculations the brain needs in order to control movement. We are looking at the end result from all those calculations."

The research was supported by the National Institutes of Health/NINDS grant #NS053603, the Chicago Community Trust through the Searle Program for Neurological Restoration at the Rehabilitation Institute of Chicago, and the Fonds de rechereche en santé du Quebec.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>