Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain cells that control appetite identified for first time

28.09.2017

Dieting could be revolutionized, thanks to the groundbreaking discovery by the University of Warwick of the key brain cells which control our appetite

  • Key brain cells which control our appetite discovered by scientists at University of Warwick
  • Tanycytes found - for the first time - to detect amino acids from food and tell the brain directly that we feel full
  • Foods high in two key amino acids - such as pork shoulder, beef sirloin steak, chicken, mackerel, plums, apricots, avocadoes, lentils and almonds - activate tanycytes and make us feel fuller quicker
  • Discovery could help to curb obesity crisis - possibility of treatments to suppress appetite and control weight by activating tanycytes in brain

Tanycyte cells reacting to a puff of the amino acid arginine.

Credit: Professor Nicholas Dale/Ms. Greta Lazutkaite

Dieting could be revolutionised, thanks to the ground-breaking discovery by the University of Warwick of the key brain cells which control our appetite.

Professor Nicholas Dale in the School of Life Sciences has identified for the first time that tanycytes - cells found in part of the brain that controls energy levels - detect nutrients in food and tell the brain directly about the food we have eaten.

... more about:
»acids »amino acids »brain cells »lysine

According to the new research, tanycytes in the brain respond to amino acids found in foods, via the same receptors that sense the flavour of amino acids ("umami" taste), which are found in the taste buds of the tongue.

Two amino acids that react most with tanycytes - and therefore are likely to make you feel fuller - are arginine and lysine.

These amino acids are found in high concentration in foods such as pork shoulder, beef sirloin steak, chicken, mackerel, plums, apricots, avocadoes, lentils and almonds - so eating those foods will activate the tanycytes and make you feel less hungry quicker.

The researchers made their discovery by adding concentrated amounts of arginine and lysine into brain cells, which were made fluorescent so that any microscopic reactions would be visible. They observed that within thirty seconds, the tanycytes detected and responded to the amino acids, releasing information to the part of the brain that controls appetite and body weight.

They found that signals from amino acids are directly detected by the umami taste receptors by removing or blocking these receptors and observing that the amino acids no longer reacted with tanycytes.

Nicholas Dale, who is Ted Pridgeon Professor of Neuroscience at the University of Warwick, commented:

"Amino acid levels in blood and brain following a meal are a very important signal that imparts the sensation of feeling full. Finding that tanycytes, located at the centre of the brain region that controls body weight, directly sense amino acids has very significant implications for coming up with new ways to help people to control their body weight within healthy bounds."

This major discovery opens up new possibilities for creating more effective diets - and even future treatments to suppress one's appetite by directly activating the brain's tanycytes, bypassing food and the digestive system.

Nearly two thirds of the UK population is overweight or obese. This excess weight elevates the risk of premature death and a range of illnesses, such as cancer, diabetes, cardiovascular disease and stroke, which greatly reduce quality of life. A new understanding of how appetite functions could curb the growing obesity crisis.

The research, 'Amino Acid Sensing in Hypothalamic Tanycytes via Umami Taste Receptors', will be published in Molecular Metabolism.

It is funded by the Biotechnology and Biological Sciences Research Council.

Media Contact

Luke Walton
L.Walton.1@warwick.ac.uk
44-078-245-40863

 @warwicknewsroom

http://www.warwick.ac.uk 

Luke Walton | EurekAlert!

Further reports about: acids amino acids brain cells lysine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>