Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Does the brain 'remember' antidepressants?

27.03.2012
Individuals with major depressive disorder (MDD) often undergo multiple courses of antidepressant treatment during their lives. This is because the disorder can recur despite treatment and because finding the right medication for a specific individual can take time.

While the relationship between prior treatment and the brain's response to subsequent treatment is unknown, a new study by UCLA researchers suggests that how the brain responds to antidepressant medication may be influenced by its remembering of past antidepressant exposure.

Interestingly, the researchers used a harmless placebo as the key to tracking the footprints of prior antidepressant use.

Aimee Hunter, the study's lead author and an assistant professor of psychiatry at UCLA's Semel Institute for Neuroscience and Human Behavior, and colleagues showed that a simple placebo pill, made to look like actual medication for depression, can "trick" the brain into responding in the same manner as the actual medication.

The report was published online March 23 in the journal European Neuropsychopharmacology.

The investigators examined changes in brain function in 89 depressed persons during eight weeks of treatment, using either an antidepressant medication or a similar-looking placebo pill. They set out to compare the two treatments — medication versus placebo — but they also added a twist: They separately examined the data for subjects who had never previously taken an antidepressant and those who had.

The researchers focused on the prefrontal cortex, an area of the brain thought to be involved in planning complex cognitive behavior, personality expression, decision-making and moderating social behavior, all things depressed people wrestle with.

Brain changes were assessed using electroencephalograph (EEG) measures developed at UCLA by study co-authors Dr. Ian Cook, UCLA's Miller Family Professor of Psychiatry, and Dr. Andrew Leuchter, a professor of psychiatry and director of the Laboratory of Brain, Behavior and Pharmacology at UCLA's Semel Institute. The EEG measure, recorded from scalp electrodes, is linked to blood flow in the cerebral cortex, which suggests the level of brain activity.

The antidepressant medication given during the study appeared to produce slight decreases in prefrontal brain activity, regardless of whether subjects had received prior antidepressant treatment during their lifetime or not. (A decrease in brain activity is not necessarily a bad thing, the researchers note; with depression, too much activity in the brain can be as bad as too little.)

However, the researchers observed striking differences in the power of placebo, depending on subjects' prior antidepressant use. Subjects who had never been treated with an antidepressant exhibited large increases in prefrontal brain activity during placebo treatment. But those who had used antidepressant medication in the past showed slight decreases in prefrontal activity — brain changes that were indistinguishable from those produced by the actual drug.

"The brain's response to the placebo pill seems to depend on what happened previously — on whether or not the brain has ever 'seen' antidepressant medication before," said Hunter, who is a member of the placebo research team at the Laboratory of Brain, Behavior and Pharmacology. "If it has seen it before, then the brain's signature 'antidepressant-exposure' response shows up."

According to Hunter, the effect looks conspicuously like a classical conditioning phenomenon, wherein prior exposure to the actual drug may have produced the specific prefrontal brain response and subsequent exposure to the cues surrounding drug administration — the relationship with the doctor or nurse, the medical treatment setting, the act of taking a prescribed pill and so forth — came to elicit a similar brain response through 'conditioning' or 'associative learning.'

While medication can have a powerful effect on our physiology, said Hunter, "the behaviors and cues in the environment that are associated with taking medication can come to elicit their own effects. One's personal treatment history is one of the many factors that influence the overall effects of treatment."

Still, she noted, there are other possible explanations, and further research is needed to tease out changes in brain function that are related to antidepressant exposure, compared with brain changes that are related to clinical improvement during treatment.

Funding for the study was provided by the National Institute of Mental Health, Eli Lilly and Company, Wyeth-Ayerst Laboratories, and Aspect Medical Systems; these funders had no further role in the study. Hunter received financial support from Covidien. For disclosures for Dr. Cook and Dr. Leuchter, please see the full paper.

The UCLA Department of Psychiatry and Biobehavioral Sciences is the home within the David Geffen School of Medicine at UCLA for faculty who are experts in the origins and treatment of disorders of complex human behavior. The department is part of the Semel Institute for Neuroscience and Human Behavior at UCLA, a world-leading interdisciplinary research and education institute devoted to the understanding of complex human behavior and the causes and consequences of neuropsychiatric disorders.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Mark Wheeler | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Health and Medicine:

nachricht Using fragment-based approaches to discover new antibiotics
21.06.2018 | SLAS (Society for Laboratory Automation and Screening)

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>