Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body's fatty folds may help fight kidney failure

21.03.2014

Stem cells from the body's omentum may preserve and improve kidney function

A fatty fold of tissue within the abdomen that is a rich source of stem cells can help heal diseased kidneys when fused to the organs, according to a study conducted in rats. The findings, which appear in an upcoming issue of the Journal of the American Society of Nephrology (JASN), suggest that stem cells from within a chronic kidney disease patient's own abdomen could be used to preserve and possibly improve kidney function.

Although adult stem cells have shown promise in treating experimental acute kidney diseases, it's unknown whether they might also alleviate chronic kidney diseases. Such a treatment strategy would typically involve injecting cells frequently over a period of many months and years because stem cells do not survive in the body for more than a few days after injection.

Ashok Singh, PhD (John Stroger, Jr Hospital of Cook County) and his colleagues attempted to overcome this hurdle in rats with kidney disease by connecting the omentum, a fatty fold of tissue that lies close to the kidney and is a rich source of stem cells, to the kidney. "This maneuver allowed us to permanently lodge stem cells in contact with the diseased kidney," explained Dr. Singh.

... more about:
»CKD »Nephrology »abdomen »diseases »failure

After 12 weeks, the omentum remained fused to the kidney, which showed signs of improved function. "The progression of chronic kidney disease was slowed due to the continuous migration of stem cells from the omentum to the diseased kidney, resulting in healing of the kidney," said Dr. Singh.

The results indicate that stem cells indeed possess the power to slow or even reverse chronic kidney disease, provided the cells are allowed to remain in the diseased kidney for a prolonged period of time.

"Attaching the omentum, a supposedly useless organ lying close to the kidney, to the diseased kidney could be put into practice after some more developmental work," said Dr. Singh. "By this technique, patients would be using their own stem cells lying in the omentum to cure their kidneys without depending on outside sources of stem cells."

In an accompanying editorial, Christof Westenfelder, MD (University of Utah) noted that the data reported by Dr. Singh and his colleagues are "novel and scientifically interesting." After pointing to some limitations to the applicability of this technology to clinical CKD, he stated that "further studies are needed to fully define the complex nature of the omentum's ability to heal injured organs and to establish its potential utility in patients with renal diseases."

###

Highlights

  • In rats with kidney disease, functioning of the kidney improved when the organ was fused with the omentum, a fatty fold of tissue that lies close to the kidney and is a rich source of stem cells.
  • Stem cells from a chronic kidney disease patient's own omentum may help heal diseased kidneys without the need for an outside source of cells. 
  • 60 million people globally have chronic kidney disease. 

Study co-authors include Ignacio Garcia-Gomez, PhD, Nishit Pancholi, MD, Jilpa Patel, MD, K P Gudehithlu, PhD, Peter Hart, MD, George Dunea, MD, and J A L Arruda, MD.

Disclosures: The authors reported no financial disclosures.

The article, entitled "Activated Omentum Slows Progression of CKD," will appear online at http://jasn.asnjournals.org/ on March 13, 2014.

The editorial, entitled "Does the Greater Omentum ("Policeman of the Abdomen") Possess Therapeutic Utility in CKD?" will appear online at http://jasn.asnjournals.org/ on March 13, 2014.

The content of this article does not reflect the views or opinions of The American Society of Nephrology (ASN). Responsibility for the information and views expressed therein lies entirely with the author(s). ASN does not offer medical advice. All content in ASN publications is for informational purposes only, and is not intended to cover all possible uses, directions, precautions, drug interactions, or adverse effects. This content should not be used during a medical emergency or for the diagnosis or treatment of any medical condition. Please consult your doctor or other qualified health care provider if you have any questions about a medical condition, or before taking any drug, changing your diet or commencing or discontinuing any course of treatment. Do not ignore or delay obtaining professional medical advice because of information accessed through ASN. Call 911 or your doctor for all medical emergencies.

Founded in 1966, and with more than 14,000 members, the American Society of Nephrology (ASN) leads the fight against kidney disease by educating health professionals, sharing new knowledge, advancing research, and advocating the highest quality care for patients.

Tracy Hampton | EurekAlert!
Further information:
http://www.nasw.org

Further reports about: CKD Nephrology abdomen diseases failure

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>