Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Body clock linked to diabetes and high blood sugar in new genome-wide study

08.12.2008
Diabetes and high levels of blood sugar may be linked to abnormalities in a person’s body clock and sleep patterns, according to a genome-wide association study published today in the journal Nature Genetics.

The research suggests that diabetes and higher than normal blood sugar levels could partly be tackled by treating sleep problems, say the researchers, from Imperial College London, the French National Research Institute CNRS, Lille University, McGill University in Canada, Steno Diabetes Centre in Denmark and other international institutions.

People with high blood sugar levels and diabetes have a greatly increased risk of developing a range of conditions, including cardiovascular diseases.

The new study shows that a mutation called rs1387153, near a gene called MTNR1B, is associated with having an increased average blood sugar level and around a 20 percent elevated risk of developing type 2 diabetes.

MTNR1B forms part of a signalling pathway that controls the action of the hormone melatonin. This hormone regulates the body’s circadian rhythm - the internal clock that controls sleeping and eating patterns – by responding to daylight and darkness.

The discovery of the rs1387153 mutation provides evidence that high blood sugar and diabetes could be directly linked to an impaired circadian rhythm.

Professor Philippe Froguel, the corresponding author of the research from the Department of Genomic Medicine at Imperial College London, said: “There is already some research to suggest there are links between sleep problems and conditions such as obesity and depression, both of which are associated with diabetes. For example, we know that obese children tend to sleep badly and that people become more obese if they are not having enough sleep. Our new study demonstrates that abnormalities in the circadian rhythm may partly be causing diabetes and high blood sugar levels. We hope it will ultimately provide new options for treating people.”

In healthy people, blood sugar levels are kept under control by insulin, which the pancreas releases in varying amounts at different periods during a 24-hour natural cycle. The researchers suggest that when there is a genetic abnormality that affects melatonin levels and sleep patterns, this may also disturb the levels of insulin in the blood, preventing the body from maintaining control of blood sugar levels.

Insulin is normally secreted in peaks during the daytime, in order to allow blood sugar from meals to be processed properly, and at lower levels at night. In contrast, melatonin levels are low during the daytime and high at night.

The new study is part of a series of discoveries about the genetics of diabetes made by Professor Froguel and his colleagues. In May 2008 they identified a genetic mutation that can raise the amount of sugar in a person's blood to harmful levels and in February 2007 they identified the key genes associated with a risk of developing type-2 diabetes in the first study to map the genes of any disease in such detail.

The new study shows that identifying which people have high numbers of genetic mutations can reveal who is at most risk of developing high blood sugar levels. On average, the more genetic mutations associated with high blood sugar levels people had, the higher their blood sugar level.

For example, people with five genetic mutations had an average fasting blood sugar level of 5.4, whereas people with one mutation had an average level of 5.12.

Forty three percent of those carrying six or more mutations had levels of fasting blood glucose of 5.6 mmol/l or more. This level is defined as being ‘impaired’ by the American Diabetes Association, meaning that such people have a very high risk of developing diabetes in the future.

Professor Froguel added: “We have been developing quite a clear picture of the key genes involved with high blood sugar and diabetes and this allows us to better understand them and suggest new avenues for treatment. We are also nearing the stage when we can develop tests that can identify the people at most risk of developing high blood sugar and diabetes later in their lives, so we can intervene to improve their health before they reach that point.”

For the new study, the team analysed the genetic makeup of 2,151 non-diabetic French people (comprising 715 lean adults, 614 lean children, 247 obese adults and 575 obese children) and identified the rs1387153 mutation as being associated with high blood sugar levels. They confirmed their findings by looking at the genetic makeup of more than 16,000 non-diabetic people from different groups in France, Denmark and Finland.

The team then determined that the presence of the rs1387153 increased the risk of type 2 diabetes by comparing the genetic makeup of 6,332 French and Danish diabetic subjects with that of a group of 9,132 French and Danish people with normal blood sugar levels. The researchers found the same links between rs1387153 and a risk of diabetes in all the European populations they studied.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Opioids: no effect without side effect
21.01.2019 | Universitätsklinikum Jena

nachricht The cytoskeleton of neurons has been found to be involved in Alzheimer's disease
18.01.2019 | University of the Basque Country

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>