Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood type A may predispose to some rotavirus infections

16.04.2012
Whether you become infected by some strains of rotavirus may depend on your blood type.

Some strains of rotavirus find their way into the cells of the gastrointestinal tract by recognizing antigens associated with the type A blood group, a finding that represents a new paradigm in understanding how this gut pathogen infects humans, said Baylor College of Medicine researchers in an online report in the journal Nature.

Rotavirus is a major intestinal pathogen that is the leading cause of severe dehydration and diarrhea in infants around the world. An estimated 500,000 people worldwide die from the infection annually.

The structure of a key part of a strain of the virus known as P[14] provides a clue to how the virus infects human cells, said Dr. B. V. Venkataram Prasad, professor of biochemistry and molecular biology at BCM and the report's corresponding author. In strains of rotavirus that infect animals, the top of a spike on the virus attaches to the cell via a glycan (one of many sugars linked together to form complex branched-chain structures) with a terminal molecule of sialic acid. The same did not appear to be true of virus strains that infect humans, and scientists believed the human rotavirus strains were bound to glycans with an internal sialic acid molecule, but they did not know how this occurs.

"We wondered how this genotype of rotavirus recognized a cellular glycan," said Prasad. "With colleagues at Emory (University School of Medicine), we did a glycan array analysis to see which glycans interacted with the top of the virus spike (called VP8*)."

The only type of glycan that interacted with VP8* was type A histo-blood group antigen, he said.

"That was surprising," he said. "We thought it had to be a glycan with sialic acid."

The histo-blood group antigen A does not have sialic acid.

However, when Dr. Liya Hu, a post-doctoral researcher in Prasad's laboratory, determined the structure of the VP8* domain, she found that the type A glycan bound to the rotavirus spike protein at the same place as the sialic acid would have in an animal rotavirus. Histo-blood group antigens are known to promote binding of norovirus and Helicobacter pylori cells to intestinal cells, but this had never been demonstrated in rotavirus.

Hu's structural study, using crystallography, showed subtle changes in the structure of the VP8* domain of the virus that allowed it to use the histo-blood group antigen A as a receptor.

In collaboration with the laboratory of Dr. Mary Estes, professor of molecular virology and microbiology at BCM, Prasad and his colleagues found that laboratory cells modified to express the histo-blood group antigen A were easily infected by this rotavirus strain. Cells that lacked this antigen were not easily infected.

An antibody to the histo-blood group antigen A blocked infection by the virus into human intestinal cells in culture.

"No one expected this," said Prasad. "Is there an emerging theme here with these intestinal pathogens? Do other viruses use these blood group antigens as a door to enter the cell?"

Further studies identified a second rotavirus strain P[9] that uses the histo-blood group antigen as a receptor, he said.

"The question now is do different strains use other histo-blood group antigens in this way?" he said.

Estes said, "These studies are significant because they provide a novel mechanism of transmission for a rotavirus strain that jumps from ungulates (such as horses, zebras, pigs, sheep) into humans."

The authors found humans infected with the P[14] strain had type A blood, but more studies are needed to confirm the connection.

Larger populations of infected individuals need to be studied to determine if there is a clear association of these virus strains using histo-blood group antigens as a receptor," they said.

This finding raises questions about why humans developed different blood groups, Prasad said. It may be an evolutionary change that occurred after the pathogen first invaded human cells.

Others who took part in this work include Sue E. Crawford, Rita Czako and Nicolas W Cortes-Penfield of BCM, David F. Smith of Emory University School of Medicine in Atlanta and Jacques Le Pendu of NSERM, Le Centre national de la recherche scientifique and Le Université de Nantes in France.

Funding for this work came from the National Institutes of Health and the Robert Welch Foundation.

Dr. Estes holds the Cullen Foundation Endowed Chair and director of the Texas Medical Center Digestive Diseases Center.

Dr. Prasad holds the Alvin Romansky Chair in Biochemistry

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Health and Medicine:

nachricht Underwater Snail-o-Bot gets kick from light
27.02.2020 | Max-Planck-Institut für Intelligente Systeme

nachricht Existing drugs may offer a first-line treatment for coronavirus outbreak
27.02.2020 | Norwegian University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>