Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood type A may predispose to some rotavirus infections

16.04.2012
Whether you become infected by some strains of rotavirus may depend on your blood type.

Some strains of rotavirus find their way into the cells of the gastrointestinal tract by recognizing antigens associated with the type A blood group, a finding that represents a new paradigm in understanding how this gut pathogen infects humans, said Baylor College of Medicine researchers in an online report in the journal Nature.

Rotavirus is a major intestinal pathogen that is the leading cause of severe dehydration and diarrhea in infants around the world. An estimated 500,000 people worldwide die from the infection annually.

The structure of a key part of a strain of the virus known as P[14] provides a clue to how the virus infects human cells, said Dr. B. V. Venkataram Prasad, professor of biochemistry and molecular biology at BCM and the report's corresponding author. In strains of rotavirus that infect animals, the top of a spike on the virus attaches to the cell via a glycan (one of many sugars linked together to form complex branched-chain structures) with a terminal molecule of sialic acid. The same did not appear to be true of virus strains that infect humans, and scientists believed the human rotavirus strains were bound to glycans with an internal sialic acid molecule, but they did not know how this occurs.

"We wondered how this genotype of rotavirus recognized a cellular glycan," said Prasad. "With colleagues at Emory (University School of Medicine), we did a glycan array analysis to see which glycans interacted with the top of the virus spike (called VP8*)."

The only type of glycan that interacted with VP8* was type A histo-blood group antigen, he said.

"That was surprising," he said. "We thought it had to be a glycan with sialic acid."

The histo-blood group antigen A does not have sialic acid.

However, when Dr. Liya Hu, a post-doctoral researcher in Prasad's laboratory, determined the structure of the VP8* domain, she found that the type A glycan bound to the rotavirus spike protein at the same place as the sialic acid would have in an animal rotavirus. Histo-blood group antigens are known to promote binding of norovirus and Helicobacter pylori cells to intestinal cells, but this had never been demonstrated in rotavirus.

Hu's structural study, using crystallography, showed subtle changes in the structure of the VP8* domain of the virus that allowed it to use the histo-blood group antigen A as a receptor.

In collaboration with the laboratory of Dr. Mary Estes, professor of molecular virology and microbiology at BCM, Prasad and his colleagues found that laboratory cells modified to express the histo-blood group antigen A were easily infected by this rotavirus strain. Cells that lacked this antigen were not easily infected.

An antibody to the histo-blood group antigen A blocked infection by the virus into human intestinal cells in culture.

"No one expected this," said Prasad. "Is there an emerging theme here with these intestinal pathogens? Do other viruses use these blood group antigens as a door to enter the cell?"

Further studies identified a second rotavirus strain P[9] that uses the histo-blood group antigen as a receptor, he said.

"The question now is do different strains use other histo-blood group antigens in this way?" he said.

Estes said, "These studies are significant because they provide a novel mechanism of transmission for a rotavirus strain that jumps from ungulates (such as horses, zebras, pigs, sheep) into humans."

The authors found humans infected with the P[14] strain had type A blood, but more studies are needed to confirm the connection.

Larger populations of infected individuals need to be studied to determine if there is a clear association of these virus strains using histo-blood group antigens as a receptor," they said.

This finding raises questions about why humans developed different blood groups, Prasad said. It may be an evolutionary change that occurred after the pathogen first invaded human cells.

Others who took part in this work include Sue E. Crawford, Rita Czako and Nicolas W Cortes-Penfield of BCM, David F. Smith of Emory University School of Medicine in Atlanta and Jacques Le Pendu of NSERM, Le Centre national de la recherche scientifique and Le Université de Nantes in France.

Funding for this work came from the National Institutes of Health and the Robert Welch Foundation.

Dr. Estes holds the Cullen Foundation Endowed Chair and director of the Texas Medical Center Digestive Diseases Center.

Dr. Prasad holds the Alvin Romansky Chair in Biochemistry

Graciela Gutierrez | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>