Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood test could diagnose Alzheimer's disease, UT Southwestern researchers find

06.10.2010
A set of proteins found in blood serum shows promise as a sensitive and accurate way to diagnose Alzheimer's disease, researchers at UT Southwestern Medical Center have found as part of a statewide study.

An analysis of the proteins, plus a clinical exam, proved 94 percent accurate in detecting suspected Alzheimer's and 84 percent accurate in ruling it out in people without the disease, the researchers said.

"This research uses a novel technology that makes it possible to analyze several biomarkers in a single blood sample in a cost-effective way," said Dr. Ramón Díaz-Arrastia, professor of neurology at UT Southwestern and senior author of the study which was published in the September issue of the Archives of Neurology.

Researchers have been seeking a simple blood test for Alzheimer's for years, Dr. Díaz-Arrastia said, but no single substance, or "biomarker," has been shown to be useful. Such a test, he said, would be comparable in principle to measuring blood cholesterol as a biomarker of cardiovascular disease.

Alzheimer's disease is an incurable degenerative brain disease, which currently afflicts about 5.3 million people over 65 in the U.S., according to the National Alzheimer's Association. By 2050 that number is expected to reach 11 million or more.

The disease is difficult to diagnose, particularly in its early stages when it resembles other cognitive problems. Currently, a definitive diagnosis is possible only after examining the brain tissue of deceased individuals. Tests for suspected Alzheimer's are often expensive or invasive, and not every patient is able or willing to undergo them, the researchers stated.

A blood test would provide a convenient diagnostic method that could be performed by health care workers nearly anywhere. In addition, a definitive diagnosis is important because treatments specifically targeting Alzheimer's might not be effective against other forms of neurodegenerative disease or cognitive decline, Dr. Díaz-Arrastia said.

Researchers associated with the Texas Alzheimer's Research Consortium, a five-university group funded by the state, carried out the research. In the current study, the scientists analyzed blood samples from 197 Texas patients who had suspected Alzheimer's and 203 people without the disease.

The researchers measured more than 100 blood proteins and created a mathematical analysis that could measure a person's risk of having Alzheimer's. The analysis, combined with information from a clinical exam, accurately detected Alzheimer's 94 percent of the time, and correctly ruled out Alzheimer's 84 percent of the time in people without the disease, Dr. Díaz-Arrastia said.

Neither the blood test nor a clinical exam alone was as accurate on its own as the blood test and clinical exam combined, the researchers found.

"Having a diagnosis is an important step, but it's not the end of the road unless you've got a treatment or a cure," Dr. Díaz-Arrastia said.

The next step in the work is to determine whether the biomarker test can detect accurately Alzheimer's in preserved blood serum from patients who have been diagnosed definitively by an autopsy.

Other UT Southwestern researchers participating in the study were Dr. Guanghua Xiao, assistant professor of clinical sciences; Dr. Joan Reisch, professor of clinical sciences and family and community medicine; and Dr. Perrie Adams, professor of psychiatry.

Also participating were researchers from Texas Tech University Health Sciences Center, University of North Texas Health Science Center, Baylor College of Medicine, and Marshfield Clinic Research Foundation.

The study also was funded by the National Institutes of Health.

Visit http://www.utsouthwestern.org/neuro to learn more about UT Southwestern's clinical services in the neurosciences, including memory disorders like Alzheimer's disease.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>