Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood clots aggravate brain injuries

13.04.2016

When the brain is injured in an accident, the damage continues to spread in the following days. Blood clots are obviously to blame for this as a research team of the University of Würzburg has found.

Causes include falls during sports accidents or vehicle accidents: Traumatic brain injury is the most common cause of death and permanent disability in teenagers and young adults. In survivors, the brain damages usually worsen directly after the accident. So far, there are no therapeutic options available to prevent this development.


Patients with traumatic brain injury often have clotted blood vessels (arrow) that can aggravate brain damage. In healthy persons, the vessels are usually free of such deposits (asterisk).

Pictures: Neurological Hospital, University of Würzburg

A possible solution is described by Würzburg scientists under the leadership of Professors Anna-Leena Sirén (experimental neurosurgery) and Christoph Kleinschnitz (neurology) in the magazine "Annals of Neurology": According to the researchers, inhibition of blood coagulation factor XII might stop the brain damage from progressing further.

Tissue samples provided the decisive cue

How did the researchers come to this conclusion? "We investigated tissue samples of patients with traumatic brain injury provided by Uppsala University with which we cooperate in the European research association CnsAflame," Sirén explains. It turned out that blood clots in the patients' brains clog blood vessels with particular frequency.

The research team believed that this is the reason why the brain damage spreads. They studied the mechanism in mice whose blood does not coagulate because the factor XII is missing. "Clogged blood vessels and post-traumatic subsequent damage were reduced significantly here," biologist Dr. Christiane Albert-Weißenberger explains. Suppressing the blood coagulation using rHA-Infestin-4, a factor XII inhibitor from CSL Behring GmbH (Marburg), also had a protective effect.

What is more: "We did not observe any bleeding when using the inhibitor. This is crucial for the drug's safe application," explains pharmacist Sarah Hopp-Krämer, who wrote her doctoral thesis on this topic in the working group of Christoph Kleinschnitz. Bleeding is a frequent complication in traumatic brain injury. Therefore, therapeutic drugs must not under any circumstances trigger bleeding.

Still a long way to clinical application

The team's conclusion: The new findings are an important step towards developing new therapies for patients suffering from craniocerebral injuries. "The patients' tissue samples have provided valuable information in this regard," Kleinschnitz further. But he predicts that several more years will pass until accident victims can potentially benefit from the new knowledge, because further tests have to be conducted to study the long-term effect of the inhibitor rHA-Infestin-4, among others. The scientists hope to continue their long-standing collaboration with the Marburg-based company for this purpose.

Sponsors of the research project

The research project was financed by the EU-funded CnsAflame research association through the Else-Kröner-Fresenius Foundation, CSL Behring GmbH and the University of Würzburg's Interdisciplinary Center for Clinical Research.

“Targeting Coagulation Factor XII as a Novel Therapeutic Option in Brain Trauma“, Sarah Hopp, Christiane Albert-Weissenberger, Stine Mencl, Michael Bieber, Michael K. Schuhmann, Christian Stetter, Bernhard Nieswandt, Peter M. Schmidt, Camelia-Maria Monoranu, Irina Alafuzoff, Niklas Marklund, Marc W. Nolte, Anna-Leena Sirén, and Christoph Kleinschnitz, Annals of Neurology, DOI: 10.1002/ana.24655

Contact

Prof. Dr. Anna-Leena Sirén, Department of Neurology of the Würzburg University Hospital, Phone +49 931 201-24579, siren.a@nch.uni-wuerzburg.de

Prof. Dr. Christoph Kleinschnitz, Department of Neurology of the Würzburg University Hospital, Phone: +49 931 201-23755, christoph.kleinschnitz@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Lung images of twins with asthma add to understanding of the disease
06.12.2019 | University of Western Ontario

nachricht Between Arousal and Inhibition
06.12.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>