Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blood clots aggravate brain injuries

13.04.2016

When the brain is injured in an accident, the damage continues to spread in the following days. Blood clots are obviously to blame for this as a research team of the University of Würzburg has found.

Causes include falls during sports accidents or vehicle accidents: Traumatic brain injury is the most common cause of death and permanent disability in teenagers and young adults. In survivors, the brain damages usually worsen directly after the accident. So far, there are no therapeutic options available to prevent this development.


Patients with traumatic brain injury often have clotted blood vessels (arrow) that can aggravate brain damage. In healthy persons, the vessels are usually free of such deposits (asterisk).

Pictures: Neurological Hospital, University of Würzburg

A possible solution is described by Würzburg scientists under the leadership of Professors Anna-Leena Sirén (experimental neurosurgery) and Christoph Kleinschnitz (neurology) in the magazine "Annals of Neurology": According to the researchers, inhibition of blood coagulation factor XII might stop the brain damage from progressing further.

Tissue samples provided the decisive cue

How did the researchers come to this conclusion? "We investigated tissue samples of patients with traumatic brain injury provided by Uppsala University with which we cooperate in the European research association CnsAflame," Sirén explains. It turned out that blood clots in the patients' brains clog blood vessels with particular frequency.

The research team believed that this is the reason why the brain damage spreads. They studied the mechanism in mice whose blood does not coagulate because the factor XII is missing. "Clogged blood vessels and post-traumatic subsequent damage were reduced significantly here," biologist Dr. Christiane Albert-Weißenberger explains. Suppressing the blood coagulation using rHA-Infestin-4, a factor XII inhibitor from CSL Behring GmbH (Marburg), also had a protective effect.

What is more: "We did not observe any bleeding when using the inhibitor. This is crucial for the drug's safe application," explains pharmacist Sarah Hopp-Krämer, who wrote her doctoral thesis on this topic in the working group of Christoph Kleinschnitz. Bleeding is a frequent complication in traumatic brain injury. Therefore, therapeutic drugs must not under any circumstances trigger bleeding.

Still a long way to clinical application

The team's conclusion: The new findings are an important step towards developing new therapies for patients suffering from craniocerebral injuries. "The patients' tissue samples have provided valuable information in this regard," Kleinschnitz further. But he predicts that several more years will pass until accident victims can potentially benefit from the new knowledge, because further tests have to be conducted to study the long-term effect of the inhibitor rHA-Infestin-4, among others. The scientists hope to continue their long-standing collaboration with the Marburg-based company for this purpose.

Sponsors of the research project

The research project was financed by the EU-funded CnsAflame research association through the Else-Kröner-Fresenius Foundation, CSL Behring GmbH and the University of Würzburg's Interdisciplinary Center for Clinical Research.

“Targeting Coagulation Factor XII as a Novel Therapeutic Option in Brain Trauma“, Sarah Hopp, Christiane Albert-Weissenberger, Stine Mencl, Michael Bieber, Michael K. Schuhmann, Christian Stetter, Bernhard Nieswandt, Peter M. Schmidt, Camelia-Maria Monoranu, Irina Alafuzoff, Niklas Marklund, Marc W. Nolte, Anna-Leena Sirén, and Christoph Kleinschnitz, Annals of Neurology, DOI: 10.1002/ana.24655

Contact

Prof. Dr. Anna-Leena Sirén, Department of Neurology of the Würzburg University Hospital, Phone +49 931 201-24579, siren.a@nch.uni-wuerzburg.de

Prof. Dr. Christoph Kleinschnitz, Department of Neurology of the Würzburg University Hospital, Phone: +49 931 201-23755, christoph.kleinschnitz@uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>