Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New blood cells fight brain inflammation

18.02.2014
Hyperactivity of our immune system can cause a state of chronic inflammation.

If chronic, the inflammation will affect our body and result in disease. In the devastating disease multiple sclerosis, hyperactivity of immune cells called T-cells induce chronic inflammation and degeneration of the brain.

Researchers at BRIC, the University of Copenhagen, have identified a new type of regulatory blood cells that can combat such hyperactive T-cells in blood from patients with multiple sclerosis. By stimulating the regulatory blood cells, the researchers significantly decreased the level of brain inflammation and disease in a biological model. The results are published in the journal Nature Medicine.

Molecule activate anti-inflammatory blood cells

The new blood cells belong to the group of our white blood cells called lymphocytes. The cells express a molecule called FoxA1 that the researchers found is responsible for the cells' development and suppressive functions.

"We knew that some unidentified blood cells were able to inhibit multiple sclerosis-like disease in mice and through gene analysis we found out, that these cells are a subset of our lymphocytes expressing the gene FoxA1. Importantly, when inserting FoxA1 into normal lymphocytes with gene therapy, we could change them to actively regulate inflammation and inhibit multiple sclerosis, explains associated professor Yawei Liu leading the experimental studies.

Activating own blood cells for treatment of disease

FoxA1 expressing lymphocytes were not known until now, and this is the first documentation of their importance in controlling multiple sclerosis. The number of people living with this devastating disease around the world has increased by 10 percent in the past five years to 2.3 million. It affects women twice more than men and no curing treatment exists. The research group headed by professor Shohreh Issazadeh-Navikas from BRIC examined blood of patients with multiple sclerosis, before and after two years of treatment with the drug interferon-beta. They found that patients who benefit from the treatment increase the number of this new blood cell type, which fight disease.

"From a therapeutic viewpoint, our findings are really interesting and we hope that they can help finding new treatment options for patients not benefiting from existing drugs, especially more chronic and progressive multiple sclerosis patients. In our model, we could activate lymphocytes by chemical stimulation and gene therapy, and we are curios whether this can be a new treatment strategy", says professor Shohreh Issazadeh-Navikas.

And this is exactly what the research group will focus on at next stage of their research. They have already started to test whether the new FoxA1-lymphocytes can prevent degradation of the nerve cell's myelin layer and brain degeneration in a model of progressive multiple sclerosis. Besides multiple sclerosis, knowledge on how to prevent chronic inflammation will also be valuable for other autoimmune diseases like type 1 diabetes, inflammatory bowel disease and rheumatoid arthritis, where inflammation is a major cause of the disease.

The research was conducted in collaboration with the Danish multiple Sclerosis Centre and Centre d'Esclerosi Múltiple de Catalunya in Barcelona. The research was supported by grants from the Danish Multiple Sclerosis Society, the Lundbeck Foundation, and the Danish Independent Research Council.

Anne Rahbek-Damm | EurekAlert!
Further information:
http://www.ku.dk

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>