Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleeding gums linked to heart disease

11.09.2008
Bad teeth, bleeding gums and poor dental hygiene can end up causing heart disease, scientists heard today (Thursday 11 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

People with poor dental hygiene and those who don't brush their teeth regularly end up with bleeding gums, which provide an entry to the bloodstream for up to 700 different types of bacteria found in our mouths. This increases the risk of having a heart attack, according to microbiologists from the University of Bristol and the Royal College of Surgeons in Ireland.

"The mouth is probably the dirtiest place in the human body," said Dr Steve Kerrigan from the Royal College of Surgeons in Dublin, Ireland. "If you have an open blood vessel from bleeding gums, bacteria will gain entry to your bloodstream. When bacteria get into the bloodstream they encounter tiny fragments called platelets that clot blood when you get a cut. By sticking to the platelets bacteria cause them to clot inside the blood vessel, partially blocking it. This prevents the blood flow back to the heart and we run the risk of suffering a heart attack."

The only treatment for this type of disease is aggressive antibiotic therapy, but with the increasing problem of multiple drug resistant bacteria, this option is becoming short lived.

"Cardiovascular disease is currently the biggest killer in the western world. Oral bacteria such as Streptococcus gordonii and Streptococcus sanguinis are common infecting agents, and we now recognise that bacterial infections are an independent risk factor for heart diseases," said Professor Howard Jenkinson from the University of Bristol. "In other words it doesn't matter how fit, slim or healthy you are, you're adding to your chances of getting heart disease by having bad teeth."

Researchers at Bristol have been investigating the ways in which the bacteria interact with platelets in order to develop new and improved therapies.

"Most of the studies that have looked at how bacteria interact with platelets were carried out under conditions that do not resemble those in the human circulatory system. We mimicked the pressure inside the blood vessels and in the heart", said Professor Jenkinson. "Using this technique we demonstrated that bacteria use different mechanisms to cause platelets to clump together, allowing them to completely encase the bacteria. This shields the bacteria from the cells of our immune systems, which would normally kill bacteria, and most importantly also protects them from antibiotics."

These findings suggest why antibiotics do not always work in the treatment of infectious heart disease and also highlight the need to develop new drugs to treat this disease. "We are currently in the process of identifying the exact site at which the bacteria stick to the platelets," said Professor Jenkinson. "Once this is identified we will design a new drug to prevent this interaction."

"We also identified several proteins on the bacteria that lead to platelet clumping," said Dr Kerrigan. "Genetic deletion of these proteins from the bacteria prevented the platelets from clumping which shows that these proteins play an essential role and may be candidate proteins for new drug development or producing vaccines."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Health and Medicine:

nachricht Discovery shows promise for treating Huntington's Disease
05.08.2020 | Ecole Polytechnique Fédérale de Lausanne

nachricht Carbon monoxide improves endurance performance
05.08.2020 | Universität Bayreuth

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>