Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bleeding gums linked to heart disease

11.09.2008
Bad teeth, bleeding gums and poor dental hygiene can end up causing heart disease, scientists heard today (Thursday 11 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

People with poor dental hygiene and those who don't brush their teeth regularly end up with bleeding gums, which provide an entry to the bloodstream for up to 700 different types of bacteria found in our mouths. This increases the risk of having a heart attack, according to microbiologists from the University of Bristol and the Royal College of Surgeons in Ireland.

"The mouth is probably the dirtiest place in the human body," said Dr Steve Kerrigan from the Royal College of Surgeons in Dublin, Ireland. "If you have an open blood vessel from bleeding gums, bacteria will gain entry to your bloodstream. When bacteria get into the bloodstream they encounter tiny fragments called platelets that clot blood when you get a cut. By sticking to the platelets bacteria cause them to clot inside the blood vessel, partially blocking it. This prevents the blood flow back to the heart and we run the risk of suffering a heart attack."

The only treatment for this type of disease is aggressive antibiotic therapy, but with the increasing problem of multiple drug resistant bacteria, this option is becoming short lived.

"Cardiovascular disease is currently the biggest killer in the western world. Oral bacteria such as Streptococcus gordonii and Streptococcus sanguinis are common infecting agents, and we now recognise that bacterial infections are an independent risk factor for heart diseases," said Professor Howard Jenkinson from the University of Bristol. "In other words it doesn't matter how fit, slim or healthy you are, you're adding to your chances of getting heart disease by having bad teeth."

Researchers at Bristol have been investigating the ways in which the bacteria interact with platelets in order to develop new and improved therapies.

"Most of the studies that have looked at how bacteria interact with platelets were carried out under conditions that do not resemble those in the human circulatory system. We mimicked the pressure inside the blood vessels and in the heart", said Professor Jenkinson. "Using this technique we demonstrated that bacteria use different mechanisms to cause platelets to clump together, allowing them to completely encase the bacteria. This shields the bacteria from the cells of our immune systems, which would normally kill bacteria, and most importantly also protects them from antibiotics."

These findings suggest why antibiotics do not always work in the treatment of infectious heart disease and also highlight the need to develop new drugs to treat this disease. "We are currently in the process of identifying the exact site at which the bacteria stick to the platelets," said Professor Jenkinson. "Once this is identified we will design a new drug to prevent this interaction."

"We also identified several proteins on the bacteria that lead to platelet clumping," said Dr Kerrigan. "Genetic deletion of these proteins from the bacteria prevented the platelets from clumping which shows that these proteins play an essential role and may be candidate proteins for new drug development or producing vaccines."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Health and Medicine:

nachricht Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis
22.02.2019 | Children's National Health System

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>