Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioelectric signals can be used to detect early cancer

01.02.2013
Changing bioelectric signals a key to halting tumor growth

Biologists at Tufts University School of Arts and Sciences have discovered a bioelectric signal that can identify cells that are likely to develop into tumors. The researchers also found that they could lower the incidence of cancerous cells by manipulating the electrical charge across cells' membranes.


This shows a tumor within a tadplole embryo that has been labeled with red fluorescence to allow tracking. Credit: Brook Chernet; Tufts University School of Arts and Sciences

"The news here is that we've established a bioelectric basis for the early detection of cancer," says Brook Chernet, doctoral student and the first author of a newly published research paper co-authored with Michael Levin, Ph.D., professor of biology and director of the Center for Regenerative and Developmental Biology.

Levin notes, "We've shown that electric events tell the cells what to do. The voltage changes are not merely a sign of cancer. They control and direct whether the cancer occurs or not."

Their paper, "Transmembrane Voltage Potential is an Essential Cellular Parameter for the Detection and Control of Tumor Development" will be published in the May 2013 issue of "Disease Models and Mechanisms" (available online on February 1).

Bioelectric signals underlie an important set of control mechanisms that regulate how cells grow and multiply. Chernet and Levin investigated the bioelectric properties of cells that develop into tumors in Xenopus laevis frog embryos.

In previous research, Tufts scientists have shown how manipulating membrane voltage can influence or regulate cellular behavior such as cell proliferation, migration, and shape in vivo, and be used to induce the formation or regenerative repair of whole organs and appendages. In this study, the researchers hypothesized that cancer can occur when bioelectric signaling networks are perturbed and cells stop attending to the patterning cues that orchestrate their normal development.

Tumor Cells Exhibit a Bioelectric Signature

The researchers induced tumor growth in the frog embryos by injecting the samples with mRNAs (messenger RNA) encoding well-recognized human oncogenes Gli1, KrasG12D, and Xrel3. The embryos developed tumor-like growths that are associated with human cancers such as melanoma, leukemia, lung cancer, and rhabdomyosarcoma (a soft tissue cancer that most often affects children).

When the researchers analyzed the tumor cells using a membrane voltage-sensitive dye and fluorescence microscopy, they made an exciting discovery. "The tumor sites had unique depolarized membrane voltage relative to surrounding tissue," says Chernet. "They could be recognized by this distinctive bioelectric signal.

Changing Electrical Properties Lowers Incidence of Tumors

The Tufts biologists were also able to show that changing the bioelectric code to hyperpolarize tumor cells suppressed abnormal cell growth. "We hypothesized that the appearance of oncogene-induced tumors can be inhibited by alteration of membrane voltage," says Levin, "and we were right."

To counteract the tumor-inducing depolarization, they injected the cells with mRNA encoding carefully-chosen ion channels (proteins that control the passage of ions across cell membranes).

Using embryos injected with oncogenes such as Xrel3, the researchers introduced one of two ion channels (the glycine gated chloride channel GlyR-F99A or the potassium channel Kir4.1) known to hyperpolarize membrane voltage gradients in frog embryos. In both cases, the incidence of subsequent tumors was substantially lower than it was with embryos that received the oncogene but no hyperpolarizing channel treatment.

Experiments to determine the cellular mechanism that allows hyperpolarization to inhibit tumor formation showed that transport of butyrate, a known tumor suppressor, was responsible

The research was supported by grants from the National Institutes of Health (awards AR061988, AR055993) and the G. Harold and Leila Y. Mathers Charitable Foundation.

Chernet, B. T. and Levin, M. (2013). Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Dis. Model. Mech. 8 February [Epub ahead of print] doi:10.1242/dmm.010835

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate, and professional programs across the university's schools is widely encouraged.

Alex Reid | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Health and Medicine:

nachricht Energizing the immune system to eat cancer
22.01.2019 | University of Pennsylvania School of Medicine

nachricht Early Prediction of Alzheimer’s Progression in Blood
22.01.2019 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

How our cellular antennas are formed

22.01.2019 | Life Sciences

Proposed engineering method could help make buildings and bridges safer

22.01.2019 | Architecture and Construction

Bifacial Stem Cells Produce Wood and Bast

22.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>