Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BGI reports the latest finding on NMNAT1 mutations linked to Leber congenital amaurosis

30.07.2012
A five-country international team, led by Casey Eye Institute Molecular Diagnostic laboratory, BGI and Zhejiang University School of Medicine First Affiliated Hospital identified the NMNAT1 mutations as a cause of Leber congenital amaurosis (LCA), one of the most common causes of inherited blindness in children.
The latest study was published online in Nature Genetics, reporting the genetic characteristics underlying some LCA patients, and providing important evidences that support NMNAT1 as a promising target for the gene therapy of LCA.

LCA is an inherited retinal degenerative disease characterized by severe loss of vision at birth. It is estimated that LCA occurs in 2 to 3 per 100,000 newborns. Currently a lot of studies are being done on LCA. Scientists found that LCA could result from mutations in at least 17 genes, all of which are necessary for normal vision and play important roles in the development and function of the retina. More importantly, gene replacement therapy has been successful in animal models and in humans more studies are underway. However, the genetic characters for about 20-30% LCA patients are still unknown.

In this study, the researchers sequenced the whole exome of an LCA patient with no previously identified mutations. They identified 2,460 previously unreported variants. Through a series of screening and analysis, the result indicated that the gene NMNAT1 may serve as a candidate for LCA. Previous studies have shown that NMNAT1 plays an important role in axonal degeneration, because it could encode an enzyme in the NAD (Nicotinamide adenine dinucleotide) biosynthesis pathway associated with protection against axonal degeneration.

In the further evaluation of NMNAT1, the researchers used Sanger sequencing to analyze 50 unrelated LCA patients with no previously indentified mutations, and they found that ten patients carried NMNAT1 mutations. By relating the clinical phenotypes of LCA patients with the mutations, the researchers found that the severity of LCA may correlate with the types of NMNAT 1 mutation: the patients carrying both of the missense variant (c.769G>A, p.Glu257Lys) and nonsense variant (c.507G>A, p.Trp169*) were all blind at birth; while those who carrying only missense variant (c.769G>A, p.Glu257Lys) may develop poor vision within a few years after birth.

Professor Ming Qi, Chief Scientist at BGI, Director of Center for Genetic and Genomic Medicine, Zhejiang University School of Medicine First Affiliated Hospital and James D. Watson Institute of Genome Sciences, said, "LCA is one of the most common causes of inherited blindness in childhood. The study on NMNAT1 lays a solid foundation for understanding genetic characteristics of LCA and other related congenital blindness diseases. It is also an important step forward for developing new molecular diagnosis and gene therapy."

About BGI
BGI was founded in Beijing, China, in 1999 with the mission to become a premier scientific partner for the global research community. The goal of BGI is to make leading-edge genomic science highly accessible, which it achieves through its investment in infrastructure, leveraging the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research: research that has generated over 200 publications in top-tier journals such as Nature and Science. BGI's many accomplishments include: sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, more recently, have sequenced the human Gut Metagenome, and a significant proportion of the genomes for the1000 Genomes Project. For more information about BGI, please visit www.genomics.cn
Contact Information:

Ming Qi
Professor and Director of Center for Genetic and Genomic Medicine, Zhejiang University School of Medicine First Affiliated Hospital and James D. Watson Institute of Genome Sciences,
Chief Scientist of BGI,
qiming@genomics.cn
www.genomics.cn
Bicheng Yang
Public Communication Officer
BGI
+86-755-82639701
yangbicheng@genomics.cn
www.genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

More articles from Health and Medicine:

nachricht Underwater Snail-o-Bot gets kick from light
27.02.2020 | Max-Planck-Institut für Intelligente Systeme

nachricht Existing drugs may offer a first-line treatment for coronavirus outbreak
27.02.2020 | Norwegian University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>