Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better equipped in the fight against lung cancer

16.05.2018

Lung cancer is the third most common type of cancer in Germany and the disease affects both men and women. However, immunotherapies are successful in only 20 percent of cases. Researchers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have now discovered a special mechanism that regulates tumour growth in lung cancer. This opens up new possibilities in the treatment of lung cancer patients. The results were published in the journal Oncoimmunology.

The body’s immune system sometimes responds to lung cancer but sometimes it fails, letting the cancer take over.


The immune system not only fights pathogens, but is also capable of recognising and eliminating pathologically mutated cells. ‘Sometimes the body’s immune system responds to lung cancer but sometimes it fails, letting the cancer take over’, says Prof. Dr. Susetta Finotto, head of the Department of Molecular Pneumology at Universitätsklinikum Erlangen. The reason that this immune response is switched off in lung cancer patients has not yet been sufficiently researched.

The body usually reacts to tumour cells with an immune response. An important signal molecule, the so-called transcription factor Tbet, plays a role in tumour defence, whereby T helper cells of group 1 (Th1 cells) and CD8 T cells (that combat tumours) are formed. The lung tumour grows if there is a lack of Tbet in the immune cells. Prof. Dr. Susetta Finotto and her team of researchers discovered this during previous research.

In the latest study carried out by Prof. Susetta Finotto’s team, Dr. Katharina Kachler researched the role of so-called Treg cells in lung cancer in more detail for her dissertation. The translational study was carried out in collaboration with Dr. Denis Trufa and Prof. Dr. Horias Sirbu, both from the Department of Thoracic Surgery at Universitätsklinikum Erlangen.

The role of Treg cells in lung cancer

Treg cells play a special role in regulating the immune system. While Treg cells play an important role in preventing inflammatory response in the lung, not enough research has been carried out on their function in lung carcinoma. Research to date has shown, however, that Treg cells suppress the anti-tumour response of the body and thus promote tumour growth.

Researchers have now discovered that lung tumours are capable of reprogramming the immune response – they produce the messenger substance TGF-beta, a protein that regulates cell growth and induces Treg cells in the surroundings. This means that cells aren’t activated to fight the cancer, but allow the tumour to grow instead. ‘Precisely those Th1 cells with Tbet that are responsible for anti-tumour immune defence are the ones that are switched off’, says Prof. Susetta Finotto.

This newly-identified TGF beta-dependent mechanism in lung cancer is very important for the regulation of tumour growth in the lung and offers new approaches for lung cancer therapy

‘This newly-identified TGF beta-dependent mechanism in lung cancer is very important for the regulation of tumour growth in the lung and offers new approaches for lung cancer therapy’, she explains. This discovery, which the researchers have published in the journal Oncoimmunology, could help to increase the survival rates of lung cancer patients. ‘In order to make clinical immunotherapy, which is only successful in 20 percent of cases, more successful in future, our solution would be to give patients TGF inhibitors in addition to conventional immunotherapy, thus cancelling out the Treg cell blockade that blocks the immune response to tumour growth’, explains Prof. Finotto.

The results were published in the journal Oncoimmunology: "The role of Foxp3 and Tbet co-expressing Treg cells in lung carcinoma". Katerina Kachler, Corinna Holzinger, Denis Trufa, Horia Sirbu and Susetta Finotto. doi: 10.1080/2162402X.2018.1456612

Further information:
Prof. Dr. Susetta Finotto
Phone: +49 / 913185-42454
susetta.finotto@uk-erlangen.de

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft
Further information:
http://www.fau.de/

More articles from Health and Medicine:

nachricht New nanomedicine slips through the cracks
24.04.2019 | University of Tokyo

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>