Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better assessments for early AMD

30.08.2018

University of Bonn coordinates a Europe-wide clinical study for the MACUSTAR consortium

The European MACUSTAR consortium is conducting a multi-country clinical study on age-related macular degeneration (AMD) coordinated by the University of Bonn. The clinical study focuses on the intermediate stage of the disease, in which a person's vision under low-light and low-contrast conditions is impaired.


This is a color photograph of an Eye Fundus with intermediate AMD.

Credit: © Universitäts-Augenklinik Bonn

Usage Restrictions: This photo may be used with the press release.

Throughout Europe, a total of 20 study centers will recruit and follow-up with 750 patients. The study rationale and protocol has recently been published in the journal Opthalmologica.

Age-related macular degeneration (AMD) is associated with a progressive loss of photoreceptor cells at the point of sharpest vision. People older than 60 years are most affected, corresponding to around 2.5 million people in the European Union.

The number of persons affected by AMD is expected to rise due to increasing life expectancy. Disease progress from an early stage to an intermediate stage is typically associated with low-light and low-contrast vision problems. Late stage AMD usually leads to irreversible central vision loss.

Currently, clinical tests available are good at diagnosing the loss of vision in late stage AMD. However, they are not sensitive to changes in vision in earlier stages of the disease, thus, hampering the testing of treatment methods to prevent or delay progression of early AMD stages. Therefore, MACUSTAR is developing novel tests to assess earlier stages of AMD.

20 Study Centers Examine 750 Patients in Europe

The core of the MACUSTAR project is a three-year observational study of 750 patients who have intermediate and other stages of AMD. They will be recruited by 20 participating clinical trial centers in seven European countries. Aim of the investigation is to find variables that provide reliable information on disease progression or stability, which could then be further developed into clinical tests.

The article published in the peer-reviewed journal Ophthalmologica summarizes the methods used to assess AMD and its impact on function and quality of life. For example, high-resolution imaging techniques will provide information on anatomical changes in the retina. Besides conventional visual function tests, vision under low-light conditions and contrast vision will be determined.

Researchers will also capture the light sensitivity of the macula, the duration of dark adaptation, and reading speed and visual path navigation under low-light conditions. In addition, questionnaires will provide information on how visual impairment is perceived by the study participants. The MACUSTAR consortium aims to identify the best method or combination of methods that indicate if a novel therapeutic approach can stop AMD progression in the future.

The Consortium

Besides the University of Bonn and GRADE Reading Center Bonn, Moorfields Eye Hospital London (MBRC), University College London (UCL), City University of London (City), Fondation Voir et Entendre (FVE) Paris, Association for Innovation and Biomedical Research on Light and Image (AIBILI) Coimbra, Radbound University Medical Center (RUMC) Nijmegen, University of Sheffield and the European Clinical Research Infrastructures Network (ECRIN) Paris as well as the companies Bayer AG, Novartis Pharma AG, Carl Zeiss-Meditec and F. Hoffmann La-Roche are involved.

The MACUSTAR consortium received a €16 million grant from the Innovative Medicines Initiative 2 Joint Undertaking (IMI2 JU) supported by the Horizon 2020 European Union Research and Innovation Framework Program and EFPIA.

###

More Information: http://www.macustar.eu or http://www.imi.europa.eu

Publication: Robert P. Finger, Steffen Schmitz-Valckenberg, Matthias Schmid, Gary S. Rubin, Hannah Dunbar, Adnan Tufail, David P. Crabb, Alison Binns, Clara I. Sánchez, Philippe Margaron, Guillaume Normand, Mary Durbin, Ulrich F. O. Luhmann, Parisa Zamiri, José Cunha-Vaz, Friedrich Asmus, Frank G. Holz: Development and clinical validation of functional, structural and patientreported endpoints in intermediate age-related macular degeneration, Ophthalmologica, DOI: 10.1159/000491402.

Contact:

Prof. Dr. med. Frank G. Holz

Prof. Dr. Dr. med. Robert Finger

University of Bonn, Dpt. of Ophthalmology

Phone 0228/287-15647

E-Mail: Frank.Holz@ukbonn.de, Robert.Finger@ukbonn.de

Web: http://www.augenklinik.uni-bonn.de

Acknowledgement: This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 116076. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA

Disclaimer: The contents of this press release reflect the view of the author. Neither the IMI nor the European Union or EFPIA are responsible for any use that may be made of the information contained therein.

Media Contact

Frank G. Holz
Frank.Holz@ukbonn.de
49-228-287-15647

 @unibonn

http://www.uni-bonn.de 

Frank G. Holz | EurekAlert!
Further information:
http://dx.doi.org/10.1159/000491402

More articles from Health and Medicine:

nachricht Novel anti-cancer nanomedicine for efficient chemotherapy
17.09.2019 | University of Helsinki

nachricht Researchers have identified areas of the retina that change in mild Alzheimer's disease
16.09.2019 | Universidad Complutense de Madrid

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>