Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley Lab Scientists Developing Quick Way to ID People Exposed to Ionizing Radiation

18.12.2012
There’s a reason emergency personnel train for the aftermath of a dirty bomb or an explosion at a nuclear power plant. They’ll be faced with a deluge of urgent tasks, such as identifying who’s been irradiated, who has an injury-induced infection, and who’s suffering from both.
Unfortunately, there isn’t a quick way to screen for people exposed to dangerous levels of radiation. There also isn’t a quick way to distinguish between people suffering from radiation exposure versus an infection due to an injury or chemical exposure.

The most common way to measure exposure is a blood assay that tracks chromosomal changes. Another approach is to watch for the onset of physical symptoms. But these methods can take several days to provide results, which is far too late to identify people who’d benefit from immediate treatment.

A much faster way could be coming. Research conducted by scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) could lead to a blood test that detects if a person has been exposed to radiation, measures their dose, and separates people suffering from inflammation injuries—all in a matter of hours.
The Berkeley Lab team that's closing in on a faster way to identify people exposed to ionizing radiation. From left: Helen Budworth, Brandon Mannion, Andy Wyrobek, Antoine Snijders, Sandhya Bhatnagar, and Noah Schwartz.

The scientists identified eight DNA-repair genes in human blood whose expression responses change more than twofold soon after blood is exposed to radiation. They also learned how these genes respond when blood is exposed to inflammation stress, which can occur because of an injury or infection. Inflammation can mimic the effects of radiation and lead to false diagnoses.

The result is a panel of biochemical markers that can discriminate between blood samples exposed to radiation, inflammation, or both. The scientists believe these markers could be incorporated into a blood test that quickly triages people involved in radiation-related incidents.

They report their research in a paper recently published online in the journal PLOS ONE.
“In an emergency involving radiation exposure, it’s likely that only a small fraction of all possibly exposed people will be exposed to high doses that require immediate medical attention,” says Andy Wyrobek of Berkeley Lab’s Life Sciences Division. “The goal is to quickly screen for these people so they can get treatment, and avoid overwhelming medical facilities with the larger number of people exposed to low levels of radiation with no immediate medical needs. Our research could lead to a blood test that enables this.”

Wyrobek conducted the research with fellow Berkeley Lab scientists Helen Budworth and Antoine Snijders, as well as several other scientists from Berkeley Lab and other institutions.

Because DNA is one of the major targets of radiation, the Berkeley Lab scientists began their research by focusing on 40 genes that regulate the expression of proteins that carry out DNA-repair tasks. They studied these genes in blood samples taken from healthy people before and after exposing the samples to 2 Gray of X-rays per year, which is about the radiation dose received by radiotherapy patients. They found twelve genes that underwent more than a twofold change in response after exposure. From these, they isolated eight genes that had no overlap between unirradiated and irradiated samples.

The scientists also treated the blood samples with a compound that mimics inflammatory stress. This enabled them to account for gene-expression responses that could be mistaken for signs of radiation exposure, but which are actually caused by injury or infection. In addition, they irradiated a portion of these samples to learn how the genes respond to both inflammation and radiation.

To validate their findings, the scientists analyzed a separate dataset of blood samples that had also been irradiated. They found a close match between their own data and the independent dataset in how the eight genes respond after radiation exposure.

They also compared their findings to a large group of bone marrow transplant patients who received total-body radiation. Again, they found a close match between their data and the gene-expression responses of the patients after they received treatment.

More work is needed, but Wyrobek envisions a blood test using their biochemical markers could be administered via a handheld device similar to what diabetes patients use to check their blood sugar. The test could help emergency personnel quickly identify people exposed to high radiation doses who need immediate care, and people exposed to lower doses who only need long-term monitoring.

The research was funded largely by the Department of Health and Human Services’ Biomedical Advanced Research and Development Authority.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Dan Krotz | EurekAlert!
Further information:
http://www.lbl.gov

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>