Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Benaroya Research Institute scientists identify drivers of rheumatoid arthritis

12.06.2014

Researchers receive $1.3 million to expand studies

Researchers at Benaroya Research Institute at Virginia Mason (BRI) used cutting-edge tetramer technology developed at BRI to find the T cells that drive rheumatoid arthritis (RA). "By using tetramer technology, we were able to examine whether T cells in people with rheumatoid arthritis were increased in number or were unique in other ways," says BRI Associate Director Jane Buckner, MD, who led the study with BRI Tetramer Core Laboratory Manager Eddie James, PhD. The findings were recently reported online in Arthritis & Rheumatology.

This tool now allows scientists to study how RA starts, how current therapies may impact the immune response directed to the joint and how to specifically target these cells therapeutically. "For the first time, we were able to demonstrate that T cells that recognize proteins in the joint were increased in the blood of people with RA and that these cells had a unique set of markers. Further we were able to demonstrate that the number of these cells changes over time in patients and with treatment." BRI is an international leader in developing tetramer technology which allows scientists to isolate cells that are difficult to pinpoint, often compared to finding a needle in a haystack.

"RA is a debilitating disease affecting people of all ages including children," says Dr. Buckner. "Many people are diagnosed in their early 20's, 30's and 40's, and it impacts them at a very productive time of their lives. We used to see people with RA in wheelchairs and needing joint replacements, but during the last 15 years we have seen incredible progress in new therapies. If people are appropriately diagnosed and treated, they can work full time and be healthy, active adults. But they can still suffer and need medications that have risks and side effects. The drugs can be costly and sometimes they don't work or eventually stop working. If untreated, the disease will permanently destroy joints and cause pain. We would like to find ways to treat people early and target only the cells that cause the disease and eventually, prevent this disease."

Rheumatoid arthritis is thought to be a T cell mediated disease and is caused when the body's immune system mistakenly begins to attack its own tissues, primarily the synovium, the membrane that lines the joints. As a result of this autoimmune response, fluid builds up in the joints, causing joint pain and systemic inflammation.

RA is a chronic disease in which most people experience intermittent periods of intense disease activity punctuated by periods of reduced symptoms or even remission. In the long term, RA can cause damage to cartilage, tendons, ligaments and bones which can lead to substantial loss of mobility.

An estimated 1.3 million people in the United States have RA—almost 1 percent of the nation's adult population. There are nearly three times as many women as men with the disease. In women, RA most commonly begins between the ages of 30 and 60. In addition, as many as 300,000 children are diagnosed with a distinct but related form of inflammatory arthritis called juvenile arthritis.

This work was funded by an Autoimmune Disease Prevention grant from the National Institutes of Health. A new grant of $1.3 million from the U.S. Department of Defense will extend the discovery to ask in-depth questions about whether these T cells reflect disease activity and if they change in patients who respond to therapy. Drs. Buckner and James will lead the study with Bernard Ng, MD, Chief of Rheumatology, Veterans Affairs Puget Sound Healthcare System. Research will include biorepository studies of samples voluntarily provided by Veterans Affairs and BRI research participants who help to advance science.

###

About Benaroya Research Institute at Virginia Mason

Benaroya Research Institute at Virginia Mason (BRI), founded in 1956, is an international leader in immune system and autoimmune disease research, translating discoveries to real-life applications. BRI employs more than 275 scientists, physician researchers and staff, supported in part by grants from the National Institutes of Health (NIH), the U.S. Department of Defense, JDRF, the Leona M. and Harry B. Helmsley Charitable Trust and others. BRI heads up several national and international consortiums and leads the Immune Tolerance Network (ITN), a research cooperative network funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the NIH.

Visit BenaroyaResearch.org or Facebook.com/BenaroyaResearch for more information about BRI, clinical studies and different types of autoimmune diseases.

Kay Branz | Eurek Alert!

Further reports about: Benaroya Rheumatology activity autoimmune diagnosed immune

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>