Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Benaroya Research Institute scientists identify drivers of rheumatoid arthritis

12.06.2014

Researchers receive $1.3 million to expand studies

Researchers at Benaroya Research Institute at Virginia Mason (BRI) used cutting-edge tetramer technology developed at BRI to find the T cells that drive rheumatoid arthritis (RA). "By using tetramer technology, we were able to examine whether T cells in people with rheumatoid arthritis were increased in number or were unique in other ways," says BRI Associate Director Jane Buckner, MD, who led the study with BRI Tetramer Core Laboratory Manager Eddie James, PhD. The findings were recently reported online in Arthritis & Rheumatology.

This tool now allows scientists to study how RA starts, how current therapies may impact the immune response directed to the joint and how to specifically target these cells therapeutically. "For the first time, we were able to demonstrate that T cells that recognize proteins in the joint were increased in the blood of people with RA and that these cells had a unique set of markers. Further we were able to demonstrate that the number of these cells changes over time in patients and with treatment." BRI is an international leader in developing tetramer technology which allows scientists to isolate cells that are difficult to pinpoint, often compared to finding a needle in a haystack.

"RA is a debilitating disease affecting people of all ages including children," says Dr. Buckner. "Many people are diagnosed in their early 20's, 30's and 40's, and it impacts them at a very productive time of their lives. We used to see people with RA in wheelchairs and needing joint replacements, but during the last 15 years we have seen incredible progress in new therapies. If people are appropriately diagnosed and treated, they can work full time and be healthy, active adults. But they can still suffer and need medications that have risks and side effects. The drugs can be costly and sometimes they don't work or eventually stop working. If untreated, the disease will permanently destroy joints and cause pain. We would like to find ways to treat people early and target only the cells that cause the disease and eventually, prevent this disease."

Rheumatoid arthritis is thought to be a T cell mediated disease and is caused when the body's immune system mistakenly begins to attack its own tissues, primarily the synovium, the membrane that lines the joints. As a result of this autoimmune response, fluid builds up in the joints, causing joint pain and systemic inflammation.

RA is a chronic disease in which most people experience intermittent periods of intense disease activity punctuated by periods of reduced symptoms or even remission. In the long term, RA can cause damage to cartilage, tendons, ligaments and bones which can lead to substantial loss of mobility.

An estimated 1.3 million people in the United States have RA—almost 1 percent of the nation's adult population. There are nearly three times as many women as men with the disease. In women, RA most commonly begins between the ages of 30 and 60. In addition, as many as 300,000 children are diagnosed with a distinct but related form of inflammatory arthritis called juvenile arthritis.

This work was funded by an Autoimmune Disease Prevention grant from the National Institutes of Health. A new grant of $1.3 million from the U.S. Department of Defense will extend the discovery to ask in-depth questions about whether these T cells reflect disease activity and if they change in patients who respond to therapy. Drs. Buckner and James will lead the study with Bernard Ng, MD, Chief of Rheumatology, Veterans Affairs Puget Sound Healthcare System. Research will include biorepository studies of samples voluntarily provided by Veterans Affairs and BRI research participants who help to advance science.

###

About Benaroya Research Institute at Virginia Mason

Benaroya Research Institute at Virginia Mason (BRI), founded in 1956, is an international leader in immune system and autoimmune disease research, translating discoveries to real-life applications. BRI employs more than 275 scientists, physician researchers and staff, supported in part by grants from the National Institutes of Health (NIH), the U.S. Department of Defense, JDRF, the Leona M. and Harry B. Helmsley Charitable Trust and others. BRI heads up several national and international consortiums and leads the Immune Tolerance Network (ITN), a research cooperative network funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the NIH.

Visit BenaroyaResearch.org or Facebook.com/BenaroyaResearch for more information about BRI, clinical studies and different types of autoimmune diseases.

Kay Branz | Eurek Alert!

Further reports about: Benaroya Rheumatology activity autoimmune diagnosed immune

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>