Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Bed Bugs Outsmart Poisons Designed to Control Them

12.01.2009
Bed bugs, once nearly eradicated in the built environment, have made a big comeback recently, especially in urban centers such as New York City.

In the first study to explain the failure to control certain bed bug populations, toxicologists at the University of Massachusetts Amherst and Korea’s Seoul National University show that some of these nocturnal blood suckers have developed resistance to pyrethroid insecticides, in particular deltamethrin, that attack their nervous systems.

The study by senior researcher John Clark and colleagues in the current issue of the Journal of Medical Entomology reveals that these pests have evolved to outsmart the latest generation of chemicals used to control them since DDT was banned. In providing this first look at a mechanism, the researchers summarize that diagnostic tools to detect the relevant mutation in bed bug populations have been “urgently needed for effective control and resistance management.”

Specifically, Clark and colleagues found that bed bugs in New York City have acquired mutations in their nerve cells, which blunt the neurotoxic effect of the pyrethroid toxins used against them. The mutations affect sodium channels (resembling pores) in the neurons’ outer membrane, where electrical nerve impulses are produced. In the past, these nervous system poisons could effectively paralyze and kill the bugs, but this is no longer always the case.

Resistance means mutations are acquired over time by selection with pyrethroids, so the neuronal pores no longer respond to their toxic effects. Clark and colleagues found that these pores in New York City bed bugs are now as much as 264 times more resistant to deltamethrin. This means that even if treated, New York City bed bugs go on to suck blood from unsuspecting sleepers for many more nights.

The researchers are not sure how widely this resistance has spread, that is, whether the bugs that infest hotels, apartment buildings and homes in places other than New York City have developed the same type of immunity to chemical control. But as Clark states, “This type of pyrethroid resistance is common in many pest insects and the failure of the pyrethroids to control bed bug populations across the United States and elsewhere indicates that resistance is already widespread.”

For this study, the researchers collected hard-to-control bed bugs from New York City, plus easy-to-control bed bugs from an untreated colony in Florida, Clark explains. The New York population was determined to be highly resistant (264 times more resistant) to deltamethrin compared to the Florida population by contact exposure. Further, they found that resistance was not due to the increased breakdown of deltamethrin (enzymatic metabolism) by the resistant bed bugs but appeared to be due to an insensitive nervous system.

Using molecular techniques, they sequenced genes related to the sodium ion channel’s operation in both groups and identified two mutations found only in the resistant population. Similar mutations have been found in other pyrethroid-resistant insects and are likely the cause of the resistance in bed bugs, Clark and colleagues note. This helps to narrow the focus of the next set of experiments designed to reveal more about the acquired resistance.

There are several kinds of bed bugs but the one best adapted to the human environment is known in Latin as Cimex (“a bug”) lectularius (“lying down at home”), which shows how long they’ve been with us. Bed bugs arrived here with the earliest European visitors. These nocturnal pests feed about once every five to 10 days but are not thought to spread disease. They use two tubes, one to inject an anticoagulant and mild anesthetic, the other to suck blood.

Janet Lathrop | Newswise Science News
Further information:
http://www.umass.edu

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>