Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Autism's early neuronal 'neighborhood'

09.04.2015

SDSU scientists find that in children with autism, sensorimotor regions of the brain become overconnected at the expense of later-developing higher-order functions

In early childhood, the neurons inside children's developing brains form connections between various regions of brain "real estate."


These fMRI scans show regions of over- and underconnectivity between the cerebellum and cerebral cortex in young people with autism spectrum disorder.

Credit: SDSU Marketing and Communications

As described in a paper published last week in the journal Biological Psychiatry, cognitive neuroscientists at San Diego State University found that in children and adolescents with autism spectrum disorder, the connections between the cerebral cortex and the cerebellum appear to be overdeveloped in sensorimotor regions of the brain.

This overdevelopment appears to muscle in on brain "real estate" that in typically developing children is more densely occupied by connections that serve higher cognitive functioning.

The study represents the first ever systematic look at connections between the entire cerebral cortex and the cerebellum using fMRI brain imaging, and its findings provide another piece in the puzzle that could one day lead researchers to develop a reliable brain-based test for identifying autism.

Back to the cerebellum

Several decades ago, scientists reported findings that certain regions of the cerebellum -- a brain region involved in motor control, but also in cognitive, social, and emotional functions -- were often smaller in people with autism than in typically developing people.

That sparked a brief flurry of research activity exploring the cerebellum's potential role in the disorder. Unfortunately, the direction never truly panned out for researchers hoping for a big breakthrough in understanding, said the study's corresponding author, SDSU psychologist Ralph-Axel Müller.

"Eventually, interest in the cerebellum waned due to a lack of consistency in the findings," he said.

Hoping that advances in brain imaging technology would reveal new insights, Müller, working with the study's first author Amanda Khan, looked back to the cerebellum for their study. Khan is a former master's student at SDSU and now a doctoral candidate at Suffolk University in Boston.

Over- and underconnected

The researchers directed 56 children and adolescents, half with autism and half without the disorder, to fixate on a focal point while thinking about nothing in particular, using fMRI brain imaging technology to scan the children's brains as they produced spontaneous brain activity. Capturing this spontaneous activity is crucial to honing in on what are essentially baseline neuronal patterns.

The imaging results revealed that the participants with autism had far stronger neuronal connectivity between sensorimotor regions of the cerebellum and cerebral cortex than did their counterparts without autism. Conversely, the participants with autism had less connectivity between regions involved in higher-order cognitive functions such as decision-making, attention and language.

The sensorimotor connections between the cerebral cortex and cerebellum mature during the first few years of life, when the brains of children with autism grow larger in volume than typically developing children, Müller explained. Connections that serve higher cognitive functions develop later, after this period of overgrowth.

"Our findings suggest that the early developing sensorimotor connections are highly represented in the cerebellum at the expense of higher cognitive functions in children with autism," he said. "By the time the higher cognitive functions begin to come online, many of the connections are already specialized. If a particular part of the brain is already functionally active in one domain, there may be no reason for the brain to switch it over to another domain later in life."

Neural neighborhood

Returning to the real estate metaphor, it's as if most of the available land has already been scooped up by sensorimotor connections before the higher-order cognitive function connections have a chance to move into the neighborhood.

The findings could help scientists and clinicians better understand exactly how abnormalities during brain development lead to various types of autism spectrum disorder. Müller hopes his work will not only contribute to a brain-based diagnosis of autism, but also be a step towards identifying its various subtypes and underlying genetic factors.

"We still don't understand what in the brain makes a kid autistic," he said. "You can't look at a scan and say, 'There it is.' We're doing the groundwork of finding brain variables that might be biomarkers for autism and its subtypes."

###

SDSU graduate students Aarti Nair and Christopher Keown, also contributed to the study, as did University of California, San Diego, graduate student Michael Datko and Alliant International University psychologist Alan Lincoln.

About San Diego State University

San Diego State University is a major public research institution offering bachelor's degrees in 89 areas, master's degrees in 78 areas and doctorates in 21 areas. The university provides transformative experiences, both inside and outside of the classroom, for its 34,000 students. Students participate in research, international experiences, sustainability and entrepreneurship initiatives, and a broad range of student life and leadership opportunities. The university's rich campus life features opportunities for students to participate in, and engage with, the creative and performing arts, a Division I athletics program and the vibrant cultural life of the San Diego region. For more information, visit http://www.sdsu.edu.

Media Contact

Natalia Elko
natalia.elko@mail.sdsu.edu
619-594-2585

 @SDSU

http://www.sdsu.edu 

Natalia Elko | EurekAlert!

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>