Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU scientists develop new, rapid pipeline for antimicrobials

14.12.2017

High-throughput technology can go from idea to discovery to stockpiling 1,000 doses within a week

With hospitals more often reaching for antibiotics of last resort to fight infections and recent Ebola and Zika outbreaks crossing borders like never before, the worldwide scientific community has been challenged with developing new antimicrobials to safeguard the population.


ASU scientists have recently met a challenge of developing a new class of antimicrobials, called synbodies, to safeguard the population against infectious threats -- all within a week.

Credit: Biodesign Institute, Arizona State University

The research arm of the U.S. Department of Defense, the Defense Advanced Research Program Agency, or DARPA, is known for taking on out-sized challenges such as this. And so, they put out a call for researchers to figure out how to make at least 1000 doses to any unknown pathogen - in a week.

An ASU team was one of the few that rose to this challenge.

"As far as we know we were the only team to figure out how to do this for any pathogen - virus or bacterium," said research leader Stephen Albert Johnston, who directs the ASU Biodesign Institute's Center for Innovations in Medicine and is a professor in the School of Life Sciences. "While the system is designed to create antimicrobials in an extreme emergency - which we hope is never needed - the basic elements can be applied to improve conventional approaches to making anti-infectives.

"My research center thrives on taking on projects most think cannot be done. This challenge was too good not to respond."

Synthetic sentinels

Antibodies are large, Y-shaped proteins produced by the human immune system to ward off foreign invaders. Our bodies mount this defense rapidly, especially if they have seen the invader before, producing the needed antibody within days of infection.

But to make them in the lab, antibodies specific for just one invader can take months, and be an expensive proposition.

Johnston wanted to mimic nature's approach while dramatically reducing the antimicrobial discovery and production time.

For the past decade, Johnston's team has been a pioneer in developing lab-made versions that focus on just the business end of antibodies, critical pathogen recognition elements, called synthetic antibodies, or synbodies.

Synbodies are made from two short protein fragments, called peptides, which are joined together to form a small, antibody-like compound still large enough to do its job.

Chipping away

But even the process of making synbodies typically takes several months.

Synbodies are selected on peptide chips containing a premade set of 10,000 peptides placed in neat rows on a microscope glass slide, called a microarray.

To generate a synbody with antibiotic activity, a solution containing bacteria or viruses can be placed on the microarray.

"Our solution to save time was to pre-screen a large number of pathogens on the microarray and find 100 peptides that would be diverse enough so that any pathogen screened would bind to two or more peptides," said Chris Diehnelt, an associate research professor in Johnston's center who oversaw the lab experiments.

They could stockpile large stocks of these 100 peptides in advance so that 1,000 or more doses of a therapeutic could be quickly produced, screening the best candidates that block a given pathogen. These candidates are then produced in large amounts, purified and tested in mice for acute toxicity so that the whole process is completed in a week.

For their proof-of-concept, they screened a total of 21 different viruses and bacteria against their synbody arrays.

"We found that the majority of the peptides recognized one pathogen," said Diehnelt.

In addition, they tested their system against two unknown pathogens that were not used in the study.

"The data showed that this array can potentially identify binding peptides for any given pathogen," said Diehnelt.

A shot in the arm

"With this approach, dozens or even hundreds of synbodies can be produced in a day," said Johnston.

The best candidates are quickly evaluated both for effective killing and toxicity to humans and can be produced on a large scale.

Finally, their system was tested against two societal scourges and major worldwide health concerns: a potentially pandemic flu strain (H1N1 influenza) as a viral test and a bacterium that causes surgery-related infections, S. epidermidis.

"Our data indicate that a new virus or bacterium can be screened against the small peptide library to discover binding peptides that can be converted into neutralizing antiviral and antibacterial synbodies in a rapid manner," said Diehnelt.

The next steps would be to prepare the final product for an IV delivery, and to scale up the system to produce enough product for a population-wide use ----should the next Ebola, Zika or unanticipated outbreak occur.

"One key, unique feature of our synbody technology is that the same platform can produce synbodies with direct antibiotic or antiviral activity, and we can do it at a fraction of the potential cost as current, commercially produced therapeutic antibodies," said Johnston.

This is good news for saving lives before the next inevitable outbreak occurs.

And for Johnston, who has also spun out companies based on other ASU technologies he has developed or co-developed, it could also mean big business in addition to the potential to save lives. The global therapeutic monoclonal antibody market and cancer therapies are in high demand, with an estimated market size close to $100 billion for 2018.

###

This work was funded by a grant from the Defense Advanced Research Projects Agency (W911NF-10-0299) to professor Stephen Albert Johnston under the 7-Day Biodefense Program.

Media Contact

Joseph Caspermeyer
joseph.caspermeyer@asu.edu
480-258-8972

 @ASU

http://asunews.asu.edu/ 

Joseph Caspermeyer | EurekAlert!

Further reports about: antibiotic bacteria bacterium pathogens peptides therapeutic

More articles from Health and Medicine:

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>