Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asthma tied to bacterial communities in the airway

18.02.2011
Asthma may have a surprising relationship with the composition of the species of bacteria that inhabit bronchial airways, a finding that could suggest new treatment or even potential cures for the common inflammatory disease, according to a new UCSF-led study.

Using new detection methods, researchers learned that the diversity of microbes inside the respiratory tract is far vaster than previously suspected – creating a complex and inter-connected microbial neighborhood that appears to be associated with asthma, and akin to what has also been found in inflammatory bowel disease, vaginitis, periodontitis, and possibly even obesity.

Contrary to popular belief, the scientists also learned that the airways are not necessarily entirely sterile environments, even in healthy people, while the airways of asthmatics are infected by a richer, more complex collection of bacteria. These findings could improve understanding of the biology of asthma, and potentially lead to new and much-needed therapies.

"People thought that asthma was caused by inhalation of allergens but this study shows that it may be more complicated than that – asthma may involve colonization of the airways by multiple bacteria,'' said study co-author Homer Boushey, MD, a UCSF professor of medicine in the division of Pulmonary and Critical Care Medicine.

The study is published online in the Journal of Allergy and Clinical Immunology. http://www.jacionline.org/issues?issue_key=S0091-6749(10)X0018-5

Asthma is one of the most common diseases in the world, with approximately 300 million asthmatics globally, including 24 million in the United States, according to the Centers for Disease Control. The disease has been on the rise for the last 60 years.

"It has gone from 3 percent of the population to slightly more than 8 percent of the population in the U.S.,'' said Boushey. "It is most prevalent in western, developed nations – and we don't know why.''

In recent years, scientists began studying communities of mixed-species microorganisms (microbiome) found in both diseased and healthy people to better understand their role in a variety of diseases. But research on the microbiome in respiratory disease is relatively uncharted terrain.

"We know fairly little about the diversity, complexity and collective function of bacteria living in the respiratory tract, and how they might contribute to diseases like asthma,'' said Yvonne J. Huang, MD, the paper's first author. She is a research fellow and clinical instructor in the UCSF Pulmonary Division.

"Traditionally, the airways have been thought to be sterile. However, this study suggests this is not the case. Certain asthma patients who require inhaled corticosteroid therapy possess a great abundance of bacteria compared to healthy individuals, and have an increased relative abundance of specific organisms that is correlated with greater sensitivity of their airways.''

In their three-year pilot project, the scientists collected samples from the airway linings of 65 adults with mild to moderate asthma and 10 healthy subjects. Then, using a tool that can identify approximately 8,500 distinct groups of bacteria in a single assay, the scientists profiled the organisms present in each sample to look for relationships between bacterial community composition and clinical characteristics of the patients' asthma.

The researchers found that bronchial airway samples from asthmatic patients contained far more bacteria than samples from healthy patients. The scientists also found greater bacterial diversity in the asthmatic patients who had the most hyper-responsive or sensitive airways (a feature of asthma).

"People have viewed asthma as a misdirected immune reaction to environmental exposures, but few have thought of it in the context of airway microbiota composition,'' said senior author Susan Lynch, PhD, an assistant professor of medicine and director of the UCSF Colitis and Crohn's Disease Microbiome Research Core in the division of gastroenterology.

"We took an ecological approach, considering the bacteria in the context of their microbial neighborhoods to identify relationships between characteristics of these communities and features of the disease…This new approach will help us to better understand the microbiota-host relationships that define human health.''

The authors say that further studies are needed to determine how these specific bacteria identified in the study may influence the cause and development of asthma.

The study was supported by the National Heart, Lung and Blood Institute and by the Strategic Asthma Basic Research Center at UCSF, supported by the Sandler Family Foundation. Huang was funded by a National Institutes of Health grant and by a UC Tobacco-related Disease Research Program award; Lynch receives research support from the NIH; Boushey is an ad-hoc consultant for KaloBios Pharmaceuticals, Inc., is on the advisory committee for Pharmaxis, is on ad-hoc advisory committees for GlaxoSmithKline and Merck, and receives research support from GlaxoSmithKline.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Follow UCSF on Twitter at http://twitter.com/ucsf

Elizabeth Fernandez | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>