Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aspirin intake may stop growth of vestibular schwannomas/acoustic neuromas

24.01.2014
Findings described in the February issue of the journal Otology and Neurotology

Researchers from Massachusetts Eye and Ear, Harvard Medical School, Massachusetts Institute of Technology and Massachusetts General Hospital have demonstrated, for the first time, that aspirin intake correlates with halted growth of vestibular schwannomas (also known as acoustic neuromas), a sometimes lethal intracranial tumor that typically causes hearing loss and tinnitus.

Motivated by experiments in the Molecular Neurotology Laboratory at Mass. Eye and Ear involving human tumor specimens, the researchers performed a retrospective analysis of over 600 people diagnosed with vestibular schwannoma at Mass. Eye and Ear. Their research suggests the potential therapeutic role of aspirin in inhibiting tumor growth and motivates a clinical prospective study to assess efficacy of this well-tolerated anti-inflammatory medication in preventing growth of these intracranial tumors.

"Currently, there are no FDA-approved drug therapies to treat these tumors, which are the most common tumors of the cerebellopontine angle and the fourth most common intracranial tumors," explains Konstantina Stankovic, M.D., Ph.D., Mass. Eye and Ear clinican-researcher and assistant professor of otology andlaryngology, Harvard Medical School, who led the study. "Current options for management of growing vestibular schwannomas include surgery (via craniotomy) or radiation therapy, both of which are associated with potentially serious complications."

The findings, which are described in the February issue of the journal Otology and Neurotology, were based on a retrospective series of 689 people, 347 of whom were followed with multiple magnetic resonance imaging MRI scans (50.3%). The main outcome measures were patient use of aspirin and rate of vestibular schwannoma growth measured by changes in the largest tumor dimension as noted on serial MRIs. A significant inverse association was found among aspirin users and vestibular schwannoma growth (odds ratio: 0.50, 95 percent confidence interval: 0.29-0.85), which was not confounded by age or gender.

"Our results suggest a potential therapeutic role of aspirin in inhibiting vestibular schwannoma growth," said Dr. Stankovic, who is an otologic surgeon and researcher at Mass. Eye and Ear, Assistant Professor of Otology and Laryngology, Harvard Medical School (HMS), and member of the faculty of Harvard's Program in Speech and Hearing Bioscience and Technology.

This work was funded by National Institute on Deafness and Other Communication Disorders grants T32 DC00038, K08DC010419 and by the Bertarelli Foundation. A full list of authors is available in the paper.

About Massachusetts Eye and Ear

Mass. Eye and Ear clinicians and scientists are driven by a mission to find cures for blindness, deafness and diseases of the head and neck. After uniting with Schepens Eye Research Institute Mass. Eye and Ear in Boston became the world's largest vision and hearing research center, offering hope and healing to patients everywhere through discovery and innovation. Mass.

Eye and Ear is a Harvard Medical School teaching hospital and trains future medical leaders in ophthalmology and otolaryngology, through residency as well as clinical and research fellowships. Internationally acclaimed since its founding in 1824, Mass. Eye and Ear employs full-time, board-certified physicians who offer high-quality and affordable specialty care that ranges from the routine to the very complex. U.S. News & World Report's "Best Hospitals Survey" has consistently ranked the Mass. Eye and Ear Departments of Otolaryngology and Ophthalmology one of the top hospitals in the nation.

Mary Leach | EurekAlert!
Further information:
http://www.meei.harvard.edu

More articles from Health and Medicine:

nachricht Study points to new drug target in fight against cancer
19.09.2019 | Rice University

nachricht Researchers develop tumour growth roadmap
19.09.2019 | Universität Leipzig

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>