Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibodies to intracellular cancer antigens combined with chemotherapy enhance anti-cancer immunity

14.02.2012
Pre-clinical study shows delay in tumor growth and prolonged survival time

An international team of scientists in Japan, Switzerland, and the United States has confirmed that combining chemotherapy and immunotherapy in cancer treatment enhances the immune system's ability to find and eliminate cancer cells, even when the cancer-associated proteins targeted by the immune system are hidden behind the cancer cell membrane.

In a study published in Cancer Research by Noguchi et al., the scientists show that antibodies, which have been successful in treating certain types of cancers, can effectively reach elusive intracellular targets, delaying tumor growth and prolonging survival when combined with chemotherapy.

"The study provides proof-of-principle for a powerful new strategy that may greatly expand the arsenal of potential targets for cancer drug development and that could be broadly applicable to many different cancer types," said Hiroyoshi Nishikawa, M.D., Ph.D., a Cancer Research Institute (CRI)-funded associate professor in the Department of Experimental Immunology at the Immunology Frontier Research Center, Osaka University, and a senior author on the paper.

The introduction of antibodies against cancer represents one of the biggest successes of cancer therapy over the past 20 years. These treatments work by targeting markers on the surface of cancer cells, and include the blockbuster therapies Herceptin, which targets the HER2/neu marker on breast cancer cells, and Rituxan, which targets the CD20 marker on B cell lymphoma.

The majority of markers that can distinguish cancer cells from normal cells, however, are found exclusively inside cancer cells, where antibodies typically cannot access them. "Therapies that can successfully target cancer antigens found within cancer cells may be able to fight cancer without causing unwanted side effects due to collateral damage to healthy cells," said study co-lead author Gerd Ritter, Ph.D., associate director of the New York Branch of the Ludwig Institute for Cancer Research (LICR), and a leading member of the CRI/LICR Cancer Vaccine Collaborative, which also supported the study.

To assess whether antibody treatment against an intracellular antigen might be successful, the researchers used an antibody against the prototypic cancer antigen NY-ESO-1 and tested it in a model of colon cancer engineered to express NY-ESO-1 within its cancer cells. Alone, the antibody had no effect against the cancer. By using chemotherapy to release NY-ESO-1 from the cancer cells prior to the administration of the antibody, however, they were able to significantly delay cancer progression and prolong survival. The researchers then tested the strategy in another cancer model using a different type of chemotherapy and showed similar results, demonstrating that this approach could be applicable to different tumor types using various standard chemotherapies.

By monitoring the immune responses to these treatments, the researchers on the study found that the anti-tumor effect of the combination was dependent on CD8+, or killer, T cells. Rather than working to kill the cancer cells directly, the antibody worked by binding to the NY-ESO-1 antigen and facilitating its presentation to CD8+ T cells, which then exerted the anti-tumor effects. These findings not only have implications for how scientists understand the mechanisms of current antibody treatments for cancer, but they also shed light on a fundamental question in clinical cancer immunology, which asks how people develop spontaneous antibody and/or CD8+ T cell responses against NY-ESO-1.

"These studies are also representative of a growing trend in immunotherapy treatment, namely the use of chemotherapy and other standard therapies to augment anti-tumor immunity," stated Hiroshi Shiku, M.D., chairman and professor in the Department of Medical Oncology and Immunology, Mie University Graduate School of Medicine, Japan, and a lead investigator on the study. Until very recently, it was thought that these treatments served to uniformly dampen the immune system and would therefore limit the potential efficacy of immunotherapies used in tandem or in sequence. A growing body of literature, however, is suggesting that certain cytotoxic, or "cell-killing," therapies such as chemotherapy and radiation, used in strategic ways, can synergize with immunotherapies to strengthen or expand the anti-tumor immune response.

Based on the success of their preclinical investigations, the study researchers are eager to take the approach into clinical testing. Such a trial would bridge what immunologists refer to as passive immunotherapy and active immunotherapy.

"It's passive because we're using antibodies manufactured outside the body—the body doesn't have to do the work to make these antibodies; but it's also active because these antibodies then mobilize the immune system to actively begin producing potent cells and endogenous molecules like cytokines and complement to attack the tumor. It's a powerful strategy that for the first time capitalizes on the full therapeutic potential of antibodies as mediators of tumor elimination," Ritter said.

Publication Reference: Noguchi et al. Intracellular tumor-associated antigens represent effective targets for passive immunotherapy. Cancer Res. canres.3072.2011; Published OnlineFirst February 8, 2012;

About the Cancer Research Institute

The Cancer Research Institute, a nonprofit established in 1953, is the global leader in cancer immunology. Since its inception, CRI has invested hundreds of millions of dollars to support research conducted by more than 3,000 scientists and clinicians worldwide to understand the immune system and how it can be harnessed to conquer all cancers. This work has laid the foundation for nearly every major cancer immunotherapy breakthrough over the past half century. Guided by an international panel of the world's leading immunologists and cancer immunologists, including three Nobel laureates and 29 members of the U.S. National Academy of Sciences, CRI provides essential funding to support every stage of discovery, from laboratory investigation to clinical trials of the most promising cancer immunotherapies for patients. CRI also sponsors a seminal international symposium on cancer immunology each year, hosts annual colloquia dedicated to overcoming challenges in immunotherapy research and development, forges collaborative partnerships between academia and industry to facilitate the development pathway for novel immunotherapeutics, and presents special recognition awards to individuals who have made outstanding contributions to cancer research, patient care, and public awareness. Through its sustaining support and leadership in the field, CRI is accelerating the development of better, safer, and more effective immunotherapies that stand to revolutionize the treatment of all cancers. For more information, visit http://cancerresearch.org.
About The Ludwig Institute for Cancer Research

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.
About the Cancer Vaccine Collaborative

The Cancer Vaccine Collaborative (CVC), a joint program of the Cancer Research Institute (CRI) and the Ludwig Institute for Cancer Research Ltd (LICR), is a coordinated global network of clinical trial sites, with special expertise in immunology, conducting parallel early stage clinical trials to identify the optimal composition of successful therapeutic cancer vaccines. CVC investigators are supported by a comprehensive independent trials management infrastructure that provides regulatory, safety, and compliance expertise and oversight, trial management, shared data collection software, intellectual property management, and funding. Since the program's inception in 2001, the Collaborative has completed or is currently conducting more than 45 early phase clinical trials of therapeutic cancer vaccines. For more information, go to http://www.cancerresearch.org/collaborative.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Health and Medicine:

nachricht Cancer cells make blood vessels drug resistant during chemotherapy
02.07.2020 | Hokkaido University

nachricht Novel potassium channel activator which acts as a potential anticonvulsant discovered
02.07.2020 | The Mount Sinai Hospital / Mount Sinai School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Electrons in the fast lane

03.07.2020 | Power and Electrical Engineering

Marine alga from the Kiel Fjord discovered as a remedy against infections and skin cancer

03.07.2020 | Life Sciences

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>