Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibodies to intracellular cancer antigens combined with chemotherapy enhance anti-cancer immunity

14.02.2012
Pre-clinical study shows delay in tumor growth and prolonged survival time

An international team of scientists in Japan, Switzerland, and the United States has confirmed that combining chemotherapy and immunotherapy in cancer treatment enhances the immune system's ability to find and eliminate cancer cells, even when the cancer-associated proteins targeted by the immune system are hidden behind the cancer cell membrane.

In a study published in Cancer Research by Noguchi et al., the scientists show that antibodies, which have been successful in treating certain types of cancers, can effectively reach elusive intracellular targets, delaying tumor growth and prolonging survival when combined with chemotherapy.

"The study provides proof-of-principle for a powerful new strategy that may greatly expand the arsenal of potential targets for cancer drug development and that could be broadly applicable to many different cancer types," said Hiroyoshi Nishikawa, M.D., Ph.D., a Cancer Research Institute (CRI)-funded associate professor in the Department of Experimental Immunology at the Immunology Frontier Research Center, Osaka University, and a senior author on the paper.

The introduction of antibodies against cancer represents one of the biggest successes of cancer therapy over the past 20 years. These treatments work by targeting markers on the surface of cancer cells, and include the blockbuster therapies Herceptin, which targets the HER2/neu marker on breast cancer cells, and Rituxan, which targets the CD20 marker on B cell lymphoma.

The majority of markers that can distinguish cancer cells from normal cells, however, are found exclusively inside cancer cells, where antibodies typically cannot access them. "Therapies that can successfully target cancer antigens found within cancer cells may be able to fight cancer without causing unwanted side effects due to collateral damage to healthy cells," said study co-lead author Gerd Ritter, Ph.D., associate director of the New York Branch of the Ludwig Institute for Cancer Research (LICR), and a leading member of the CRI/LICR Cancer Vaccine Collaborative, which also supported the study.

To assess whether antibody treatment against an intracellular antigen might be successful, the researchers used an antibody against the prototypic cancer antigen NY-ESO-1 and tested it in a model of colon cancer engineered to express NY-ESO-1 within its cancer cells. Alone, the antibody had no effect against the cancer. By using chemotherapy to release NY-ESO-1 from the cancer cells prior to the administration of the antibody, however, they were able to significantly delay cancer progression and prolong survival. The researchers then tested the strategy in another cancer model using a different type of chemotherapy and showed similar results, demonstrating that this approach could be applicable to different tumor types using various standard chemotherapies.

By monitoring the immune responses to these treatments, the researchers on the study found that the anti-tumor effect of the combination was dependent on CD8+, or killer, T cells. Rather than working to kill the cancer cells directly, the antibody worked by binding to the NY-ESO-1 antigen and facilitating its presentation to CD8+ T cells, which then exerted the anti-tumor effects. These findings not only have implications for how scientists understand the mechanisms of current antibody treatments for cancer, but they also shed light on a fundamental question in clinical cancer immunology, which asks how people develop spontaneous antibody and/or CD8+ T cell responses against NY-ESO-1.

"These studies are also representative of a growing trend in immunotherapy treatment, namely the use of chemotherapy and other standard therapies to augment anti-tumor immunity," stated Hiroshi Shiku, M.D., chairman and professor in the Department of Medical Oncology and Immunology, Mie University Graduate School of Medicine, Japan, and a lead investigator on the study. Until very recently, it was thought that these treatments served to uniformly dampen the immune system and would therefore limit the potential efficacy of immunotherapies used in tandem or in sequence. A growing body of literature, however, is suggesting that certain cytotoxic, or "cell-killing," therapies such as chemotherapy and radiation, used in strategic ways, can synergize with immunotherapies to strengthen or expand the anti-tumor immune response.

Based on the success of their preclinical investigations, the study researchers are eager to take the approach into clinical testing. Such a trial would bridge what immunologists refer to as passive immunotherapy and active immunotherapy.

"It's passive because we're using antibodies manufactured outside the body—the body doesn't have to do the work to make these antibodies; but it's also active because these antibodies then mobilize the immune system to actively begin producing potent cells and endogenous molecules like cytokines and complement to attack the tumor. It's a powerful strategy that for the first time capitalizes on the full therapeutic potential of antibodies as mediators of tumor elimination," Ritter said.

Publication Reference: Noguchi et al. Intracellular tumor-associated antigens represent effective targets for passive immunotherapy. Cancer Res. canres.3072.2011; Published OnlineFirst February 8, 2012;

About the Cancer Research Institute

The Cancer Research Institute, a nonprofit established in 1953, is the global leader in cancer immunology. Since its inception, CRI has invested hundreds of millions of dollars to support research conducted by more than 3,000 scientists and clinicians worldwide to understand the immune system and how it can be harnessed to conquer all cancers. This work has laid the foundation for nearly every major cancer immunotherapy breakthrough over the past half century. Guided by an international panel of the world's leading immunologists and cancer immunologists, including three Nobel laureates and 29 members of the U.S. National Academy of Sciences, CRI provides essential funding to support every stage of discovery, from laboratory investigation to clinical trials of the most promising cancer immunotherapies for patients. CRI also sponsors a seminal international symposium on cancer immunology each year, hosts annual colloquia dedicated to overcoming challenges in immunotherapy research and development, forges collaborative partnerships between academia and industry to facilitate the development pathway for novel immunotherapeutics, and presents special recognition awards to individuals who have made outstanding contributions to cancer research, patient care, and public awareness. Through its sustaining support and leadership in the field, CRI is accelerating the development of better, safer, and more effective immunotherapies that stand to revolutionize the treatment of all cancers. For more information, visit http://cancerresearch.org.
About The Ludwig Institute for Cancer Research

LICR is an international non-profit organization committed to improving the understanding and control of cancer through integrated laboratory and clinical discovery. Leveraging its worldwide network of investigators and the ability to sponsor and conduct its own clinical trials, the Institute is actively engaged in translating its discoveries into applications for patient benefit. Since its establishment in 1971, the Institute has expended more than $1.5 billion on cancer research.
About the Cancer Vaccine Collaborative

The Cancer Vaccine Collaborative (CVC), a joint program of the Cancer Research Institute (CRI) and the Ludwig Institute for Cancer Research Ltd (LICR), is a coordinated global network of clinical trial sites, with special expertise in immunology, conducting parallel early stage clinical trials to identify the optimal composition of successful therapeutic cancer vaccines. CVC investigators are supported by a comprehensive independent trials management infrastructure that provides regulatory, safety, and compliance expertise and oversight, trial management, shared data collection software, intellectual property management, and funding. Since the program's inception in 2001, the Collaborative has completed or is currently conducting more than 45 early phase clinical trials of therapeutic cancer vaccines. For more information, go to http://www.cancerresearch.org/collaborative.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>