Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic may reduce stroke risk and injury in diabetics

25.08.2010
A daily dose of an old antibiotic may help diabetics avoid a stroke or at least minimize its damage, Medical College of Georgia researchers report.

Minocycline, a drug already under study at MCG for stroke treatment, may help diabetics reduce remodeling of blood vessels in the brain that increases their stroke risk and help stop bleeding that often follows a stroke, said Dr. Adviye Ergul, physiologist in the MCG Schools of Medicine and Graduate Studies.

"We know that diabetes is bad and that diabetics have more strokes and that when they have a stroke they do more poorly," said Ergul, corresponding author on the study published in the Journal of Cerebral Blood Flow and Metabolism. Nearly 70 percent of the estimated 24 million Americans with diabetes list a major vascular event such as a stroke or heart attack as a cause of death, according to the American Diabetes Association.

To figure out why, the researchers focused on the blood vessels of diabetic rats, finding that even moderately elevated blood glucose levels can result in thicker, twisted blood vessels that tend to leak, resulting in the bleeding that can follow a stroke. Clot-based strokes are the most common type while hemorrhagic strokes tend to be most lethal. But diabetics are at risk for a sort of combination in which a clot causes the stroke and leaking from the blood vessels follows – called hemorrhagic transformation – a scenario that can dramatically worsen the stroke's effect, Ergul said.

Much of the bad vascular remodeling that occurs in diabetes results from elevated glucose activating matrix metalloproteinases or MMPs. "They break down things and allow for cells to move so blood vessels change shape," Ergul said. They also destroy the basement membrane of blood vessels, allowing the destructive bleeding that often follows a diabetic stroke. On the good side, MMPs help clean up damage to enable repair and recovery.

One way minocycline works is by blocking MMPs. Less directly, diabetes drugs like metformin, used to lower blood sugar, also reduce MMP levels.

Another MCG research team, led by Dr. David Hess, stroke specialist and chairman of the Department of Neurology, is showing that minocycline given alone or with tPA, the clot dissolver that is the only FDA-approved stroke treatment, can also work after a stroke to help minimize damage. One great synergy about the pair is that tPA increases bleeding risk and minocycline decreases it.

That could particularly benefit diabetics who already are at increased risk for bleeding, particularly when oxygen is restored to that area of the brain. This damage – called a reperfusion injury – is a primary reason that a diabetic stroke may look small on a magnetic resonance image but can have a devastating, effect, Ergul also has found.

Some of her next studies will include giving both tPA and minocycline to diabetic rats to study bleeding and the impact of the two drugs on blood vessels, particularly the tiny ones that are tightly connected to brain cells.

The research was funded by the National Institutes of Health, the American Heart Association and the Department of Veterans Affairs.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>